摘要
将药物、蛋白或基因高效且安全地递送到治疗部位一直是药学研究的热点。无机纳米材料以其良好的稳定性、优异的生物相容性以及较高的药物负载能力成为药物递送系统的理想材料。本文从已报道的研究以及临床试验入手,对常用的无机纳米材料如碳纳米材料、二氧化硅纳米粒、钙纳米材料、金纳米粒、磁性纳米粒、上转换纳米粒和量子点在药物递送和临床转化方面的应用进行综述,为无机纳米药物递送载体在新药研发上的应用提供理论参考,对无机纳米材料进入临床应用进行了展望。
纳米技术在生物医学研究的科学创新中起着关键作用。无机纳米材料以其良好的生物相容性、易于制备合成和表面共轭化学范围广等特点渐渐成为了研究热
碳纳米材料包括0D富勒烯和碳量子点,1D碳纳米管/纳米角和石墨烯纳米带,2D石墨烯和氧化石墨烯以及3D纳米金刚石。碳纳米材料的可调光学和电子特性,简单的合成技术以及与各种配体和生物分子的兼容性,使得其在体外和体内生物传感、生物成像和药物递送中具有广泛应用前
由于碳纳米材料本身具有高表面积、低毒性、良好的生物相容性等优点,使其在药物递送方面具有非常广泛的应用。基于石墨烯的碳纳米材料中被研究最多的是氧化石墨烯(GO)。作为纳米载体,氧化石墨烯不仅可以有效递送各种化疗药物,还可以增强光热或光动力效应。虽然GO在近红外光的吸收不高,但由于其良好的分散性,使其具有较高的光热效率,因此可以在近红外光的照射下导致温度升高。另外,GO介导的光热效应还包括通过氧化应激和线粒体膜去极化作用从而诱导细胞凋
除了GO之外,碳纳米管(CNT)也是用于药物递送比较有前景的一类碳纳米材料,其表面的载药效率和载药量主要受结构类型(单壁或多壁)或是接枝不同的亲水性分子控制。功能化的CNT纳米载体不仅可以提高细胞的摄取效率,还可通过控制体外药物的释放方式降低细胞毒性。Bhatnagar
单壁碳纳米角(SWCNH)具有CNT类似的结构,还可在内、外壁上实现靶向配体和药物分子的连接。在氧化后,SWCNHs的孔可以被打开,并且其内部充满功能性羧基,其边缘可作为不同药物共价结合的位点。与CNT相比,SWCNHs的细胞毒性更低,且其生产过程中不需要金属催化剂,污染少。此外SWCNH在生物溶液中仅组装成平均直径小于100 nm的球形共轭物,更容易实现细胞摄取和肿瘤细胞的靶向递送。Chen

Figure 1 Schematic illustration of the preparation of dual drug-loaded SWNH
具有荧光特性的碳点(CD)成为纳米药物载体的研究热点,CD具有良好的水溶性、高生物相容性、低毒性以及可调节的吸收和发射峰波长。更重要的是,CD合成通常比较简便且不需要有毒有机溶剂,对环境污染

Figure 2 Schematic illustration of multifunctional zwitterionic carbon dot drug delivery syste
除此之外,碳纳米材料在药物-基因共递送方面也有广泛的应用。由于其自身荧光性质,还可用于体内成像,因此碳纳米材料的视疗一体化研究也十分深入。
二氧化硅纳米粒(SNP)具有多孔结构可调,比表面积大等优点使其在药物递送领域得到广泛研究。目前SNP被用于递送如布洛芬、阿霉素、喜树碱、顺铂、阿仑膦酸盐、肽类药物、蛋白质药物和基因药物
部分药物口服肠道吸收差、生物利用度低,限制了其临床应用。Mellaerts
此外,SNP亦可用于涂覆在其他纳米结构的表面,如SNP涂覆金纳米棒用于制备NIR响应的纳米级药物递送系统。Zhang
钙主要以生物矿物质的形式存在,包括骨骼和牙齿等生物硬组织中的磷酸钙、碳酸钙、硅酸钙和氟化钙。由于其优异的生物相容性、生物活性和生物可降解性,包括磷酸钙、碳酸钙、硅酸钙和氟化钙在内的合成钙纳米材料已被广泛研究用于各种生物医学应
磷酸钙(CaP)纳米材料由于其生物相容性和生物降解性而被广泛用于生物学和医学。磷酸钙的优势是其骨诱导性,常用作组织植入物和骨替代材料。此外,磷酸钙还经常用作药物和其他生物活性分子的递送载体,其在生理pH条件下维持矿物质结构,在细胞内内体(pH 5.0)与溶酶体(pH 4.5)中可被溶解,进而控制药物在细胞中的递

Figure 3 Schematic illustration of core-shell type CaP-AHA/siRNA nanoparticle
A: Preparation process; B: After injection via intravenous route
碳酸钙纳米材料也是药物递送方面的一大研究热点。碳酸钙以方解石、文石和球霰石等形式存在,其中球霰石型因其具有大孔隙率、高表面积以及能在相对温和的条件下快速溶解的优点,具有良好的药物递送前景。Zhao
金纳米粒(Au NP)由于其生物相容性和独特的光学特性,被认为是当今纳米医学中使用最广泛的金属纳米粒,金纳米粒包括纳米球、纳米棒、纳米壳和纳米笼
Au NP在小分子药物递送方面具有非常广的应用和研究。例如,Tomuleasa
Au NP还可被用于基因递送。Lee
1956年,Gilchrist首次将磁性纳米粒应用于生物医学研究中,利用纳米粒的感应加热来治疗肿瘤部位附近的淋巴
Lee
氧化铁磁性纳米粒也可用于修饰其他药物递送载体以达到磁性靶向的目的。例如,磁性纳米粒修饰的碳纳米管被证明是递送抗肿瘤药物的有效载体。Chen
除了利用其靶向作用,氧化铁磁性纳米粒还可用于控制药物释放。Langer
中空氧化锰纳米粒(HMON)十分适用于MRI的T1造影剂。HMON也可用作药物递送,与氧化铁纳米粒相比,其表面积更大,载药率更高,有更长的体内循环时间。Bae
上转换纳米粒(UCP)具有多种独特的性质,如超强光稳定性、深层组织穿透性和对生物样品的最小光损伤性,这使其具有广泛的生物学应用,包括成像,检测和治疗。UCP的一般合成方法是共沉淀,水热合成和热分解。近年来,UCP已被用作药物递送载体以及光动力治疗剂。例如,生育酚聚乙二醇1000琥珀酸酯(TPGS)功能化的UCP用于阿霉素的转运。TPGS可以抑制P-糖蛋白的表达并促进细胞内药物的积累,因此该纳米系统对阿霉素耐药的MCF-7细胞具有强大的杀伤力。另有多项研究报道,UCP适用于PDT,因为UCP可以被近红外光激发并发出UV可见光,从而激活光敏
上转换纳米粒主要是由镧系离子和活化离子构成。掺杂有镧系离子(L
量子点(QD)是直径在2~10 nm的荧光纳米粒,一般由半导体材料组成,包括CdSe,ZnS,PbSe,PbS,InP,GaAs,Au@CdSe,FePt @ CdSe,CdTeSe,CdHgTe,CdHgTe/ZnS,ZnTe/CdSe等。由于量子点具有良好的荧光特性、高量子产率,因此被广泛应用于生物成像、传感和检测。QD具有较高的比表面积,且易于表面修饰,将QD应用于药物递送可以实现对纳米粒的生物分布和药物释放实时监控。将诊断和治疗能力整合到同一药物递送系统一直是近年来研究的热点。量子点则是这类药物递送系统的“潜力股”,因为它们可以不仅可以充当药物递送载体,还可以作为纳米递送系统的荧光标
Bagalkot

Figure 4 Schematic illustration of the hyaluronic acid-ZnO quantum dots-dicarboxyl-terminated poly(ethyleneglycol) (HA-ZnO-PEG) drug delivery syste
无机纳米材料在临床转化方面还具有许多挑战,最大的问题就是体内长期毒性。无机纳米材料虽然被大量研究证实急性毒性较低,但其能否从体内清除,是否会造成长期毒性还无法验证。在碳纳米材料的临床应用中,最大的难题是它的长期潜在毒性以及低清除率。只有解决了碳纳米材料的体内清除问题,它才有应用于临床研究的可能。将QD转化到临床应用中的主要障碍是QD诱导的细胞毒性。由于QD由有毒的金属原子组成,因此它们会通过光子诱导的自由基和胶体作用诱导细胞毒性。最常用的量子点核心元素为镉,由于核心具有电子活性并且易于发生光和空气氧化,因此可以通过促进自由基的形成来进一步产生细胞毒性。另有数据表明,游离镉离子的细胞毒性与自由基的产生有关,并且无论是否存在光子活化,都可能进一步导致DNA损
Au NP在临床转化方面已有许多研究,一些Au NP (例如与肿瘤坏死因子结合的Au NP)已经完成了关键的临床试验。尽管还没有临床批准的Au NP产品,但多种用于不同治疗应用(从治疗实体瘤到治疗痤疮)的Au NPs正在临床研究中。 AuroLas
氧化铁纳米粒(IONP)被广泛地用作与磁共振成像(MRI)相结合的非侵入性诊断成像的造影剂。目前,多种IONP已被批准在临床上用作诊断和成像剂。尽管IONP在临床研究中获得了很大成功,但大多数已批准的IONP均已停产。当前,临床应用最多的IONP是Ferumoxytol(
尽管一种应用于肿瘤成像和诊断的SNP目前正在临床试验研究中,但由SNP组成的纳米药物递送系统尚未在临床转化上取得成功。SNP面临的主要挑战之一是无法从体内清除,SNP将在体内进行长循环。由于其通过调节物理参数合成不同的独特结构组合数量较多,因此SNP要特别关注的另一个挑战是确定SNP单一的大小、形状和孔隙率,从而为特定疾病带来最佳的治疗。
无机纳米粒近年来在生物医学领域已成为研究热点,但其在临床转化应用方面仍存在一些问题和挑战。无机纳米粒虽然在粒径大小、合成方法、表面修饰和生物相容性等方面具有一定的优势,但是在将这些纳米递药系统应用于临床之前,对其在体内的行为、毒性,生物分布和清除方式的研究仍是一大挑战。目前已有部分无机纳米粒应用于临床,仍有大量处于临床试验阶段,但多是应用于体内成像,用作药物递送的较少。因此,将无机纳米粒作为递药系统的临床转化,是无机纳米材料开发需要重点解决的问题。
无机纳米粒组分与有机纳米粒组分相结合可能是将无机纳米材料应用于临床的有效途径,可以将无机纳米粒子纳入主要由有机材料组成的递药系统以获得增强治疗效果和诊断能力的功能。例如具有IONP功能化的磁响应聚合物纳米粒,可用于靶向治疗或成像的目的。因此无机纳米粒有望在成像、诊断和某些疾病的临床应用中产生巨大影响。
参考文献
Bogart LK, Pourroy G, Murphy CJ, et al. Nanoparticles for imaging, sensing, and therapeutic intervention[J].ACS Nano, 2014, 8(4): 3107-3122. [百度学术]
Cho EC, Glaus C, Chen J, et al. Inorganic nanoparticle-based contrast agents for molecular imaging[J]. Trends Mol Med, 2010, 16(12): 561-573. [百度学术]
Panwar N, Soehartono AM, Chan KK, et al. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery[J]. Chem Rev, 2019, 119(16): 9559-9656. [百度学术]
Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes[J].Biomaterials, 2011, 32(4): 1121-1129. [百度学术]
Miao W, Shim G, Lee S, et al. Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer[J].Biomaterials, 2013, 34(13): 3402-3410. [百度学术]
Islami M, Zarrabi A, Tada S, et al. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide[J]. Int J Nanomed, 2018, 13: 6059-6071. [百度学术]
Liu Z, Zhang J, Tian Y, et al. Targeted delivery of reduced graphene oxide nanosheets using multifunctional ultrasound nanobubbles for visualization and enhanced photothermal therapy[J].Int J Nanomed, 2018, 13: 7859-7872. [百度学术]
Bhatnagar I, Venkatesan J, Kiml SK. Polymer functionalized single walled carbon nanotubes mediated drug delivery of gliotoxin in cancer cells[J].J Biomed Nanotechnol, 2014, 10(1): 120-130. [百度学术]
Wu H, Shi H, Zhang H, et al. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery[J].Biomaterials, 2014, 35(20): 5369-5380. [百度学术]
Chen D, Wang C, Jiang F, et al. In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system[J]. J Mater Chem B, 2014, 2(29): 4726-4732. [百度学术]
Yang J, Su H, Sun W, et al. Dual chemodrug-loaded single-walled carbon nanohorns for multimodal imaging-guided chemo-photothermal therapy of tumors and lung metastases[J]. Theranostics, 2018, 8(7): 1966-1984. [百度学术]
Chien YH, Chan KK, Anderson T, et al. Advanced near-infrared light-responsive nanomaterials as therapeutic platforms for cancer therapy[J]. Adv Ther, 2019, 2(3): 1800090. [百度学术]
Wang H, Di J, Sun Y, et al. Biocompatible PEG-chitosan@carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy[J]. Adv Funct Mater, 2015, 25(34): 5537-5547. [百度学术]
Tang J, Kong B, Wu H, et al. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging[J]. Adv Mater, 2013, 25(45): 6569-6574. [百度学术]
Jung YK, Shin E, Kim BS. Cell nucleus-targeting zwitterionic carbon dots[J]. Sci Rep, 2015, 5: 18807-18807. [百度学术]
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery[J]. Adv Mater, 2012, 24(12): 1504-1534. [百度学术]
Mellaerts R, Mols R, Jammaer JA, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica[J]. Eur J Pharm Biopharm, 2008, 69(1): 223-230. [百度学术]
Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins[J]. J Am Chem Soc, 2007, 129(28): 8845-8849. [百度学术]
Xia T, Kovochich M, Liong M, et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs[J]. ACS Nano, 2009, 3(10): 3273-3286. [百度学术]
Zhang Z, Wang L, Wang J, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment[J]. Adv Mater, 2012, 24(11): 1418-1423. [百度学术]
Qi C, Lin J, Fu H, et al. Calcium-based biomaterials for diagnosis, treatment, and theranostics[J]. Chem Soc Rev, 2018, 47(2): 357-403. [百度学术]
Li WM, Chiang CS, Huang WC, et al. Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer[J]. J Control Release, 2015, 220(Pt A): 107-118. [百度学术]
Zhang J, Sun X, Shao R, et al. Polycation liposomes combined with calcium phosphate nanoparticles as a non-viral carrier for siRNA delivery[J]. J Drug Deliv Sci Tec, 2015, 30(Part A): 1-6. [百度学术]
Chen J, Sun X, Shao R, et al. VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer[J]. Int J nanomed, 2017, 12: 6075-6088. [百度学术]
Liu Y, Wang T, He F, et al. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery[J]. Int J nanomed, 2011, 6: 721-727. [百度学术]
Qiu C, Wei W, Sun J, et al. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy[J]. Nanoscale, 2016, 8(26): 13033-13044. [百度学术]
Zhao Y, Lu Y, Hu Y, et al. Synthesis of superparamagnetic CaCO3 mesocrystals for multistage delivery in cancer therapy[J]. Small, 2010, 6(21): 2436-2442. [百度学术]
Shafiu KA, Ismail M, Tengku Ibrahim TA, et al. A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system[J]. Biol Med Res Int, 2013, 2013(3): 587451-587451. [百度学术]
Wu JL, He XY, Jiang PY, et al. Biotinylated carboxymethyl chitosan/CaCO3 hybrid nanoparticles for targeted drug delivery to overcome tumor drug resistance[J]. RSC Adv, 2016, 6(73): 69083-69093. [百度学术]
Wu J, Zhu YJ, Cao SW, et al. Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: surfactant-free sonochemical synthesis and drug-delivery system with ultrahigh drug-loading capacity[J]. Adv Mater, 2010, 22(6): 749-753. [百度学术]
Wu C, Chang J, Fan W. Bioactive mesoporous calcium-silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth[J]. J Mater Chem, 2012, 22(33): 16801-16809. [百度学术]
Yuan Z, Lu F, Peng M, et al. Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles[J]. Anal Chem, 2015, 87(14): 7267-7273. [百度学术]
Hostetler MJ, Green SJ, Stokes JJ, et al. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds[J]. J Am Chem Soc, 1996, 118(17): 4212-4213. [百度学术]
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem Rev, 2004, 104(1): 293-346. [百度学术]
Mieszawska AJ, Mulder WJM, Fayad ZA, et al. Multifunctional gold nanoparticles for diagnosis and therapy of disease[J]. Mol Pharm, 2013, 10(3): 831-847. [百度学术]
Tomuleasa C, Soritau O, Orza A, et al. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells[J]. J Gastrointestin Liver Dis, 2012, 21(2): 187-196. [百度学术]
Heo DN, Yang DH, Moon HJ, et al. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy[J]. Biomaterials, 2012, 33(3): 856-866. [百度学术]
Lee SE, Sasaki DY, Perroud TD, et al. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA[J]. J Am Chem Soc, 2009, 131(39): 14066-14074. [百度学术]
Shim MS, Kim CS, Ahn YC, et al. Combined multimodal optical imaging and targeted gene silencing using stimuli-transforming nanotheragnostics[J]. J Am Chem Soc, 2010, 132(24): 8316-8324. [百度学术]
Gilchrist RK, Medal R, Shorey WD, et al. Selective inductive heating of lymph nodes[J]. Ann Surg, 1957, 146(4): 596-606. [百度学术]
Meyers PH, Cronic F, Nice CM, et al. Experimental approach in the use and magnetic control of metallic iron particles in the lymphatic and vascular system of dogs as a contrast and isotopic agent[J]. Am J Roentgenol Radium Ther Nucl Med, 1963, 90: 1068-1077. [百度学术]
Shah BP, Pasquale N, De G, et al. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis[J]. ACS Nano, 2014, 8(9): 9379-9387. [百度学术]
Chen ML, He YJ, Chen XW, et al. Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery[J]. Langmuir, 2012, 28(47): 16469-16476. [百度学术]
Hafeli UO. Magnetically modulated therapeutic systems[J]. Int J Pharm, 2004, 277(1/2): 19-24. [百度学术]
Chen H, Langer R. Magnetically-responsive polymerized liposomes as potential oral delivery vehicles[J]. Pharm Res, 1997, 14(4): 537-540. [百度学术]
Edelman ER, Langer R. Optimization of release from magnetically controlled polymeric drug release devices[J]. Biomaterials, 1993, 14(8): 621-626. [百度学术]
Bae KH, Lee K, Kim C, et al. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging[J]. Biomaterials, 2011, 32(1): 176-184. [百度学术]
Zheng Y, Zhang H, Hu Y, et al. MnO nanoparticles with potential application in magnetic resonance imaging and drug delivery for myocardial infarction[J]. Int J nanomed, 2018, 13: 6177-6188. [百度学术]
Yang G, Xu L, Chao Y, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses[J]. Nat commun, 2017, 8(1): 902. [百度学术]
Wang F, Li C, Cheng J, et al. Recent advances on inorganic nanoparticle-based cancer therapeutic agents[J]. Inter J Env Res Pub Heal, 2016, 13(12): 1182. [百度学术]
Zhang P, Steelant W, Kumar M, et al. Versatile photosensitizers for photodynamic therapy at infrared excitation[J]. J Am Chem Soc, 2007, 129(15): 4526-4527. [百度学术]
Zeng L, Luo L, Pan Y, et al. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites[J]. Nanoscale, 2015, 7(19): 8946-8954. [百度学术]
Cui S, Yin D, Chen Y, et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct[J]. ACS Nano, 2013, 7(1): 676-688. [百度学术]
Wang C, Tao H, Cheng L, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J]. Biomaterials, 2011, 32(26): 6145-6154. [百度学术]
Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications[J]. Int J nanomed, 2017, 12: 5421-5431. [百度学术]
Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer[J]. Nano Lett, 2007, 7(10): 3065-3070. [百度学术]
Byrne S, Corr S, Rakovich T, et al. Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging[J]. J Mater Chem, 2006, 16(28): 2896. [百度学术]
Cai X, Luo Y, Zhang W, et al. pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery[J]. ACS Appl Mater Interfaces, 2016, 8(34): 22442-22450. [百度学术]
Bwatanglang IB, Mohammad F, Yusof NA, et al. In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system[J]. J Colloid Interface Sci, 2016, 480: 146-158. [百度学术]
Singh RD, Shandilya R, Bhargava A, et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: from biology to clinical translation[J]. Front Genet, 2018, 9: 616. [百度学术]
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci U S A, 2003, 100(23): 13549-13554. [百度学术]
Anselmo AC, Mitragotri S. A review of clinical translation of inorganic nanoparticles[J]. AAPS J, 2015, 17(5): 1041-1054. [百度学术]