摘要
间变性淋巴瘤激酶(ALK)抑制剂是目前治疗NSCLC伴ALK阳性的有效药物,然而,耐药性的产生严重限制了其临床应用。本文对ALK抑制剂耐药产生的主要机制如二次基因突变、基因扩增、旁路通路激活等进行了简要介绍,并对联合用药、开发新型PROTAC降解剂等逆转耐药策略进行了综述,以期为ALK抑制剂药物的未来发展提供参考。
间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)属于胰岛素受体(insulin receptor,IR)超家族,是一种高度保守的受体型酪氨酸激酶。在成人中,ALK主要在神经系统,睾丸和小肠中表达并参与调控神经系统的功能和发
近年来,全球已研发出不少针对ALK的小分子靶向药物,其中,2011年上市的克唑替尼(crizotinib)是治疗ALK依赖的NSCLC的第1个ALK抑制

目前公认的ALK抑制剂的耐药主要包括原发性耐药和获得性耐药,原发性耐药机制目前尚不明确,初步认为与肿瘤内在因素或患者/药物特异性因素有
该机制已被证明与多种激酶类药物耐药的产生密切相
不同ALK抑制剂诱发的二次突变区不甚相同,比如在克唑替尼耐药的患者中观察到,ALK激酶域中位于ATP结合口袋底部的亮氨酸残基L1196,会突变为蛋氨酸(Met),蛋氨酸更长的硫醚侧链会增加空间位阻,从而阻碍了克唑替尼与ALK激酶的结合,该突变也被称为L1196M“守门员”突变。此外,位于ATP结合区的甘氨酸残基会点突变为位阻更大的缬氨酸,该突变(G1269A)也是引起克唑替尼耐药的主要突变之

图1 第1代、第2代ALK抑制剂诱发的常见二次基因突变
A:各种基因突变的频
ALK扩增目前仅在少部分克唑替尼耐药的患者发现,而且扩增的发生频率远低于二次突变,因此目前在临床上,基因扩增已不被认为是导致第2代及其之后开发的ALK抑制剂的主要耐药机
当ALK的信号通路被抑制之后,与其密切关联的其他肿瘤蛋白信号通路(如EGFR、KIT、IGF1R等)会因为反馈机制而补偿性激
肿瘤细胞表型的改变比如EMT会使肿瘤细胞获得间质形态并具有迁移和侵袭能力,这也被认为是导致肿瘤转移以及产生耐药的原因之一。研究发
除了以上几种耐药机制,药物转运蛋白P糖蛋白(P-glycoprotein)的过度表达导致的药物外排增加,从而使中枢神经系统(central nervous system,CNS)药物暴露量低引起ALK抑制剂的耐药也有文献报
不同抗肿瘤药物的合理联用是目前临床上克服肿瘤耐药性的一种常用手段和方
研究表明,EML4-ALK融合蛋白是热休克蛋白90(heat shock protein 90,Hsp90)高度敏感的客户蛋白,干扰该分子伴侣蛋白功能可以有效地降低EML-ALK的表达并抑制ALK的激酶活

2018年,Yun

3.1.3 与CDK抑制剂联用 细胞周期蛋白依赖性激酶(cyclin dependent kinase,CDK)是多种细胞周期进程的主要调节因子,它能与相应的调节亚基细胞周期蛋白(cyclin)结合形成有活性的二聚体,参与细胞周期的调

EGFR通路的异常激活是导致肿瘤耐药的重要机制之一。在多种ALK抑制剂耐药细胞株及患者体内均发现,肿瘤细胞中的NGR1-HER3-EGFR这条信号通路被代偿性激活,因而肿瘤细胞即使在ALK信号通路被阻断之后仍可以通过其他信号通路增生分化,继而对ALK抑制剂产生了耐

最近几年,免疫治疗已成为抗肿瘤药物的研究热点。研究表明,如果EML4-ALK融合蛋白过表达,会在缺氧或者有氧状态下通过介导缺氧诱导因子HIF-1α和信号传导转录激活蛋白STAT3的上调,增加程序性死亡受体配体1(programmed death ligand-1,PD-L1)的表达,从而导致T细胞抑制,致使肿瘤细胞发生免疫逃
Repotrectinib(TPX-0005),是由美国TP Therapeutics公司研发的一种具有特殊环状结构的ALK/ROS1/TRK/SRC小分子抑制剂,也被誉为第4代ALK抑制

酪氨酸激酶的晶体结构表明,几乎所有酪氨酸激酶都具有相似的催化结构域。其中,在ATP结合位点附近,有一段由3个氨基酸形成的保守活性链段序列,天冬氨酸-苯丙氨酸-甘氨酸(Asp-Phe-Gly,DFG)。DFG的构象非常关键,当Asp处于ATP结合位点附近的疏水腔外时,激酶处于活性构象(DFG-in),而当其位于激酶的内部时,激酶则处于非活性构象(DFG-out

图2 化合物5a(黄色)、克唑替尼(蓝色)与ALK的共晶复合物叠合图(PDB:2XP2
为了克服耐药,研究者也设计合成了一些新型的小分子抑制剂。比如针对G1202R激酶区突变导致的耐药,Mathi

蛋白降解靶向嵌合体(proteolytic targeting chimera,PROTAC)是一类能够通过诱导靶蛋白的多聚泛素化而导致靶蛋白降解的化合物。PROTAC技术作为新兴的药物研发技术,已成为目前肿瘤治疗领域的研发热点。研究表明,通过设计合适的PROTAC分子可以在一定程度上克服小分子抑制剂的缺陷(例如耐药

ALK抑制剂作为目前ALK阳性NSCLC的主要治疗药物,改善了NSCLC的治疗模式,延长了广大病患的总生存期和无进展生存期,取得了良好的治疗效果。但是,原发性或获得性耐药的发生,使其在临床上的应用也受到了明显的限制。近年来,随着二次基因突变、旁路激活、上皮间质转化等耐药机制的不断明析,已逐渐开发出针对这些耐药机制的多种治疗策略。例如,设计开发出可以克服基因突变的新1代ALK抑制剂或者将ALK抑制剂与多种化疗药物或免疫治疗药物联用。此外,利用PROTAC技术开发的靶向蛋白降解药物在解决耐药问题方面的潜力也备受关注。然而,虽然这些策略在一定程度上改善了ALK抑制剂的治疗效果,但均存在着或多或少的不足,比如新型的ALK抑制剂的研发周期过长、投入大,不能立即满足临床的迫切需求,而联合用药导致的不同药物之间潜在的相互作用以及药代动力学性质差异等问题,不仅会降低疗效,而且可能会增强毒性。另外,PROTAC药物分子结构过大,水溶性和PK/PD性质不佳,脱靶毒性严重等,也制约着该技术的进一步应用。因此,如何解决现有的关键问题,将很有可能是未来的研究热点和方向。
参 考 文 献
Morris SW,Kirstein MN,Valentine MB,et al.Fusion of a kinase gene,ALK,to a nucleolar protein gene,NPM,in non-Hodgkin's lymphoma[J].Science,1994,263(5151):1281‒1284. [百度学术]
Chiarle R,Voena C,Ambrogio C,et al.The anaplastic lymphoma kinase in the pathogenesis of cancer[J].Nat Rev Cancer,2008,8(1):11‒23. [百度学术]
Sasaki T,Rodig SJ,Chirieac LR,et al.The biology and treatment of EML4-ALK non-small cell lung cancer[J].Eur J Cancer,2010,46(10):1773‒1780. [百度学术]
Soda M,Choi YL,Enomoto M,et al.Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer[J].Nature,2007,448(7153):561‒566. [百度学术]
Golding B,Luu A,Jones R,et al.The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC)[J].Mol Cancer,2018,17(1):1‒15. [百度学术]
Roskoski R.Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers[J].Pharmacol Res,2017,117:343‒356. [百度学术]
Kwak EL,Bang YJ,Camidge DR,et al.Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer[J].N Engl J Med,2010,363(18):1693‒1703. [百度学术]
Casaluce F,Sgambato A,Sacco PC,et al.Resistance to crizotinib in advanced non-small cell lung cancer (NSCLC) with ALK rearrangement:mechanisms,treatment strategies and new targeted therapies[J].Curr Clin Pharmacol,2016,11(2):77‒87. [百度学术]
Gainor J,Dardaei L,Yoda S,et al.Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer[J].Cancer Discov,2016,6(10):1118‒1133. [百度学术]
Shaw AT,Friboulet L,Leshchiner I,et al.Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F[J].N Engl J Med,2016,374(1):54‒61. [百度学术]
Yarden Y,Elkabets M.Resistance to anti-cancer therapeutics targeting receptor tyrosine kinases and downstream pathways[M].Cham:Springer International Publishing,2018. [百度学术]
Lin JJ,Riely GJ,Shaw AT.Targeting ALK:precision medicine takes on drug resistance[J].Cancer Discov,2017,7(2):137‒155. [百度学术]
Kong X,Pan P,Sun H,et al.Drug discovery targeting anaplastic lymphoma kinase (ALK)[J].J Med Chem,2019,62(24):10927‒10954. [百度学术]
Lin JJ,Shaw AT.Resisting resistance:targeted therapies in lung cancer[J].Trends Cancer,2016,2(7):350‒364. [百度学术]
Doebele RC,Pilling AB,Aisner DL,et al.Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer[J].Clin Cancer Res,2012,18(5):1472‒1482. [百度学术]
Katayama R,Shaw AT,Khan TM,et al.Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers[J].Sci Transl Med,2012,4(120):120ra17. [百度学术]
Ou SHI,Azada M,Hsiang DJ,et al.Next-generation sequencing reveals a novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib[J].J Thorac Oncol,2014,9(4):549‒553. [百度学术]
Jamme P,Descarpentries C,Gervais R,et al.Relevance of detection of mechanisms of resistance to ALK inhibitors in ALK-rearranged NSCLC in routine practice[J].Clin Lung Cancer,2019,20(4):297‒304. [百度学术]
Yamaguchi N,Lucena-Araujo AR,Nakayama S,et al.Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer[J].Lung Cancer,2014,83(1):37‒43. [百度学术]
Kim HR,Kim WS,Choi YJ,et al.Epithelial-mesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4-ALK translocation[J].Mol Oncol,2013,7(6):1093‒1102 . [百度学术]
Katayama R,Sakashita T,Yanagitani N,et al.P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer[J].EBioMedicine,2016,3:54‒66. [百度学术]
Nijenhuis CM,Haanen JB,Schellens JH,et al.Is combination therapy the next step to overcome resistance and reduce toxicities in melanoma[J]?Cancer Treat Rev,2013,39(4):305‒312. [百度学术]
Shi JY,Bai Y,Peng KW,et al.Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J].J China Pharm Univ(中国药科大大学学报),2019,50(5):523‒530. [百度学术]
Chen Z,Sasaki T,Tan X,et al.Inhibition of ALK,PI3K/MEK,and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene[J].Cancer Res,2010,70(23):9827‒9836. [百度学术]
Sang J,Acquaviva J,Friedland JC,et al.Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer[J].Cancer Discov,2013,3(4):430‒443. [百度学术]
Jhaveri K,Ochiana SO,Dunphy MP,et al.Heat shock protein 90 inhibitors in the treatment of cancer:current status and future directions[J].Expert Opin Investig Drugs,2014,23(5):611‒628. [百度学术]
Yun MR,Lim SM,Kim SK,et al.Enhancer remodeling and MicroRNA alterations are associated with acquired resistance to ALK inhibitors[J].Cancer Res,2018,78(12):3350‒3362. [百度学术]
Fukuda K,Takeuchi S,Katayama R,et al.HDAC inhibition overcomes crizotinib-resistance by mesenchymal-epithelial transition (MET) in EML4-ALK lung cancer cells[J].J Thorac Oncol,2017,12(1):S382‒S383. [百度学术]
Shen J,Najafi S,Stäble S,et al.A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment[J].Cell Death Differ,2018,25(12):2053‒2070. [百度学术]
Asghar U,Witkiewicz AK,Turner NC,et al.The history and future of targeting cyclin-dependent kinases in cancer therapy[J].Nat Rev Drug Discov,2015,14(2):130‒146. [百度学术]
Wood AC,Krytska K,Ryles HT,et al.Dual ALK and CDK4/6 inhibition demonstrates synergy against neuroblastoma[J].Clin Cancer Res,2017,23(11):2856‒2868. [百度学术]
Isozaki H,Ichihara E,Takigawa N,et al.Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases[J].Cancer Res,2016,76(6):1506‒1516. [百度学术]
Sasaki T,Koivunen J,Ogino A,et al.A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors[J].Cancer Res,2011,71(18):6051‒6060. [百度学术]
Koh J,Jang JY,Keam B,et al.EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1α and STAT3[J].Oncoimmunology,2016,5(3):e1108514. [百度学术]
Bylicki O,Paleiron N,Margery J,et al.Targeting the PD-1/PD-L1 immune checkpoint in EGFR-mutated or ALK-translocated non-small-cell lung cancer[J].Target Oncol,2017,12(5):563‒569. [百度学术]
Felip E,de Braud FG,Maur M,et al.Ceritinib plus nivolumab (NIVO) in patients (pts) with anaplastic lymphoma kinase positive (AL
Drilon A,Ou SI,Cho BC,et al.Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations[J].Cancer Discov,2018,8(10):1227‒1236. [百度学术]
Cui JJ,Zhai D,Deng W,et al.TPX-0005,a novel ALK/ROS1/TRK inhibitor,effectively inhibited a broad spectrum of mutations including solvent front ALK G1202R,ROS1 G2032R and TRKA G595R mutants[J].Eur J Cancer,2016,69:S32. [百度学术]
Zhai DY,Deng W,Huang J,et al.Abstract 3161:TPX-0005,an ALK/ROS1/TRK inhibitor,overcomes multiple resistance mechanisms by targeting SRC/FAK signaling[C].Cancer Res,2017,77(13_suppl):3161. [百度学术]
Xu M.Predicting inactive conformations of protein kinases (蛋白激酶非活性构象的预测方法研究)[D].Shanghai:Fudan University,2019. [百度学术]
Blanc J,Geney R,Menet C.Type II kinase inhibitors:an opportunity in cancer for rational design[J].Anti-Cancer Agents Med Chem,2013,13(5):731‒747. [百度学术]
Pan P,Yu H,Liu Q,et al.Combating drug-resistant mutants of anaplastic lymphoma kinase with potent and selective type-I1/2 inhibitors by stabilizing unique DFG-shifted loop conformation[J].ACS Cent Sci,2017,3(11):1208‒1220. [百度学术]
Zhao Z,Wu H,Wang L,et al.Exploration of type II binding mode:a privileged approach for kinase inhibitor focused drug discovery[J].ACS Chem Biol,2014,9(6):1230‒1241. [百度学术]
Tu CH,Lin WH,Peng YH,et al.Pyrazolylamine derivatives reveal the conformational switching between type I and type II binding modes of anaplastic lymphoma kinase (ALK)[J].J Med Chem,2016,59(8):3906‒3919. [百度学术]
Mathi GR,Kang CH,Lee HK,et al.Replacing the terminal piperidine in ceritinib with aliphatic amines confers activities against crizotinib-resistant mutants including G1202R[J].Eur J Med Chem,2017,126:536‒549. [百度学术]
Geng K,Xia Z,Ji Y,et al.Discovery of 2,4-diarylaminopyrimidines bearing a resorcinol motif as novel ALK inhibitors to overcome the G1202R resistant mutation[J].Eur J Med Chem,2018,144:386‒397. [百度学术]
Chen YF,Wu JX,Wang AL,et al.Discovery of N-(5-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-4-methoxy-2-(4-methyl-1,4-diazepan-1-yl)phenyl)acrylamide (CHMFL-ALK/EGFR-050) as a potent ALK/EGFR dual kinase inhibitor capable of overcoming a variety of ALK/EGFR associated drug resistant mutants in NSCLC[J].Eur J Med Chem,2017,139:674‒697. [百度学术]
Ott GR,Cheng M,Learn KS,et al.Discovery of clinical candidate CEP-37440,a selective inhibitor of focal adhesion kinase (FAK) and anaplastic lymphoma kinase (ALK)[J].J Med Chem,2016,59(16):7478‒7496. [百度学术]
Sun X,Rao Y.PROTACs as potential therapeutic agents for cancer drug resistance[J].Biochemistry,2020,59(3):240‒249. [百度学术]
Zhang C,Han X,Yang X,et al.Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK)[J].Eur J Med Chem,2018,151:304‒314. [百度学术]
Kang CH,Lee DH,Lee CO,et al.Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC)[J].Biochem Biophys Res Commun,2018,505(2):542‒547. [百度学术]