摘要
随着生物制剂的迅猛发展,治疗性单克隆抗体以其低毒高效的优点占据临床治疗的重要地位,临床疗效的个体差异对开展抗体药物的常规治疗药物监测提出了新的需求。因此,建立准确、可靠的分析方法定量测定单克隆抗体,对于其临床应用至关重要。近年来LC-MS/MS技术在大分子药物中的应用越来越广泛。本文综述了LC-MS/MS技术在单克隆抗体定量分析中的应用、常见问题及解决办法等,为治疗性单克隆抗体的临床治疗药物监测提供技术支撑。
近年来,治疗性单克隆抗体(monoclonal antibody, mAb)在临床中应用越来越广泛,其用于多种疾病的治疗,包括各种肿瘤、免疫疾病、炎症性疾病
mAbs的传统生物分析方法包括:液相放射免疫测定、固相酶联免疫吸附测定、报告基因测定、酶免疫测定、均相迁移测定
LC-MS/MS定量分析mAbs主要有两种途径:(1)“自下而上”(bottom-up approach)分析,即把mAbs酶解成更小的肽,然后选取一个或多个特征肽进行LC-MS/MS分析。(2)“自上而下”(top-down approach)分析,即直接用LC-MS/MS分析完整的mAbs,但此方法受分析物大小限制,常适用于相对分子质量小于10~15 kD的mAb
“自下而上”的分析检测mAbs某一肽段而非整个蛋白质,所以检测灵敏度高,选择性好,应用广泛。“自上而下”的分析可减少样品制备步骤,提高分析通量。然而,由于全扫描光谱中蛋白质电荷包膜、加合物形成和色谱分离的复杂性,使其难以获得足够的灵敏
方法开发的关键是选择治疗性mAbs的特征肽,常选择mAbs的互补决定区(CDR)序列的片段作为特征肽,选择标准为:(1)特征肽应具有唯一性(拥有唯一的序列)和代表性;(2)肽序列长度为6~20个氨基酸,若氨基酸太少检测易受到干扰,而氨基酸太多会超出检测限;(3)在整个分析过程中稳定,避免有反应性残基和易被修饰的氨基酸,如甲硫氨酸、天冬酰胺、色氨酸和谷氨酰胺;(4)尽量不含连续或交替出现的精氨酸、赖氨酸,以及脯氨酸-精氨酸或脯氨酸-赖氨酸序列,以避免酶切不完全;(5)特征肽在MS/ MS分析中易于离子化和解离,质谱响应
目前,特征肽的确定方法主要包括:(1)从已有实验数据中寻找特征肽;(2)根据相关数据库预测特征肽,并选取可信度高的肽段进行进一步比对,常用工具软件包括Peptide Mass,Protein BLAST,Peptide Atlas,Skyline,UniProt/Swissprot
mAbs基质样品复杂,混有大量内源性蛋白质和小分子化合物,因此需对其进行样品前处理,以提高灵敏度、选择性和准确性。
该法选用一定量的胰蛋白酶直接对mAbs进行酶切,与其他方法相比,该法操作简单,成本更低。因为精氨酸和赖氨酸在mAbs中出现频率较高,胰蛋白酶会切割精氨酸和赖氨酸后的肽键,故常选用胰蛋白酶作为蛋白水解
溶液中酶解法,是通过加热或添加表面活性剂[如十二烷基硫酸钠(SDS)或RapiGest,等]使蛋白质变性,然后用二硫苏糖醇(DTT)或三(2-羧乙基)膦等还原二硫键,再加入碘乙酰胺(IAA)等烷化剂使还原后的巯基烷基化,形成稳定硫化物,以阻止二硫键的恢复,最后加入胰蛋白酶进行酶切处理,用甲酸终止酶切反应,得到所需肽段。
蛋白球酶解法,是用甲醇、乙腈、饱和硫酸铵溶液等将待测样品进行蛋白沉淀,离心去除上清液后用碳酸氢铵溶液复溶蛋白球,得到均匀的蛋白悬浮液,直接加入胰蛋白酶酶
总体而言,蛋白球酶解法可有效地去除一些水溶性蛋白、磷脂、盐类等,与溶液中酶解法相比,提取后的样品更干净,干扰更
该方法包括样品经SPE柱后进行酶解和酶解后的样品经过SPE柱两种,该类方法可实现样品的进一步纯化,是一种更具选择性、灵敏度更高的样品净化方式,可以除去绝大部分干扰物质,降低杂质信
由于生物样品的组成很复杂,其内源性蛋白的总浓度高达60~80 mg/mL。故简单的酶解处理不能满足低丰度蛋白的检测灵敏度,即需要进行富集操作,以减少干扰并提高mAbs分析的灵敏度,其中一种富集方法是去除高丰度蛋白。白蛋白是含量最丰富的蛋白质,质量浓度为35~50 mg/mL,故常利用化学亲和力或免疫亲和力,采用白蛋白消耗试剂盒去除血清中大量白蛋白或其他高丰度蛋
mAbs样品前处理常需要用特异性或非特异性方法富集目标分析物。其中,免疫捕获富集是最常用的方法,其通过特异性抗体等捕获目标蛋白或其特征肽,然后洗脱除去未被捕获的杂质,再将待测物与捕获剂分离,洗脱收集待测物后进行酶切处理。使用的捕获剂包括抗独特型抗体、目标mAbs本身的配体蛋白、蛋白A、蛋白G、抗人Fc抗体等,一般前两种用于具有抗原结合位点的mAbs的亲和纯化,可定量分析游离药物(非配体形式)的浓度;而后几种广泛用于具有免疫球蛋白(Ig)G Fc区域的mAbs的亲和纯化,可定量测定总药物浓
Ig是血清中最丰富的蛋白质之
选择内标对于LC-MS/MS分析至关重要,其可有效地校正样本处理分析过程中的偏差及基质效应,从而确保分析方法的稳健性和检测结果的可靠性。
SIL肽是目前最常用的一种内标,通常在酶切处理后加入。这种方法非常直接,能有效校正酶切后及LC-MS/MS分析过程中的偏差,且SIL肽常易于以低成本合
延伸SIL肽即在特征肽两端的酶切位点加上额外的氨基酸。在样品酶切前加入延伸SIL肽内标,该类内标可随样品一起被胰蛋白酶酶切,从而在一定程度上校正酶切效率的变
SIL蛋白作为内标,通常在样品处理开始时添加,甚至在样品采集期间添加,从而很好地监测酶切效率、样品处理全过程和LC-MS/MS分析结果。这类内标可以作为金标准来确保方法的准确性和精密度。但缺点是不易获得,要制备完全相同的SIL蛋白是相当困难的,因为即使是培养条件的微小差异也可能导致糖链或氨基酸修饰的显著差
当难以获得SIL蛋白内标时,可考虑选用蛋白质类似物为内标。蛋白质类似物内标应尽可能与治疗性mAbs相似,以更好地校正目标蛋白的分析偏差。例如,Willrich
另外,Damen
与小分子化合物不同,在ESI条件下,蛋白质或肽会形成多电荷离子,从而使高分子质量的蛋白或肽在质谱有限的质荷比扫描范围内能被检测到。但是同一蛋白或肽在不同的ESI条件下电离会产生电荷分布不同的多电荷离子峰簇,其丰度和稳定性存在较大差异,从而降低了质谱检测的分辨率和选择性。所以对于LC-MS/MS分析蛋白类药物,需特别注意要选择灵敏度高的母离子。此外,离子源参数特别是去簇电压(DP)、流动相的组成、pH、基质等对其质谱响应的影响显著。Hahne
稳定性是mAbs定量分析的主要关注点。研究表明,样品储存条件影响蛋白质或肽的稳定
此外,某些氨基酸如蛋氨酸和半胱氨酸易发生氧化,因此,应尽量减少暴露在空气中的时间。因半胱氨酸易于形成分子内和分子间二硫键,常加入DTT或2-巯基乙醇,以完全还原二硫键,然后用IAA或碘乙酸烷基化。
pH也影响mAbs的稳定性。在酸性条件下,某些氨基酸残基末端易发生裂解及脱酰胺作用等。因此,应尽可能在pH近中性的缓冲液中处理并储存mAbs。还需注意的是,反复冻融、剧烈涡旋等会破坏蛋白质,样品处理过程应温和,储存过程中也应避免此类情
mAbs易吸附于容器壁、移液枪头、LC-MS系统管路等,导致各浓度水平回收率不平行、质谱响应降低等。一般,带正电的肽及蛋白易吸附于带负电的玻璃表面,而中性肽及蛋白由于疏水性相互作用,易吸附于疏水性的聚丙烯材料物上。然而,吸附不容易预测,仅在实验中表现出
LC-MS/MS测定肽和蛋白的一个潜在问题是待测样品与蛋白特异性结合。随着生物药物的快速发展,一个值得关注的问题是抗药抗体(ADA) 的形成,其产生于机体免疫系统的一种自身保
LC-MS/MS在mAbs分析研究中越来越受关注,与传统方法比较,其选择性好、重现性佳、方法稳健、结果准确可靠,是ELISA等方法强有力的补充。然而,由于mAbs的固有特征,LC-MS/MS定量测定mAbs面临着诸多挑战,其样品处理操作相对繁琐。相信随着LC-MS/MS技术的发展,可以实现部分操作的自动化,仪器性能也会有更好地提高,从而将LC-MS/MS技术广泛用于mAbs的治疗药物监测,更好地发挥抗体药物的治疗作用。
References
Kaplon H, Reichert JM. Antibodies to watch in 2018[J]. MAbs, 2018, 10(2): 183-203. [百度学术]
Oude Munnink TH, Henstra MJ, Segerink LI, et al. Therapeutic drug monitoring of monoclonal antibodies in inflammatory and malignant disease: Translating TNF-α experience to oncology[J]. Clin Pharmacol Ther, 2016, 99(4): 419-431. [百度学术]
Vozy A, Zalcman G. Pembrolizumab for the treatment of non-small-cell lung cancer[J]. Oncologie, 2015, 17(9): 407-408. [百度学术]
Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market[J]. MAbs, 2015, 7(1): 9-14. [百度学术]
Singh S, Kumar NK, Dwiwedi P, et al. Monoclonal antibodies: a review[J]. Curr Clin Pharmacol, 2018, 13(2): 85-99. [百度学术]
Widmer N, Bardin C, Chatelut E, et al. Review of therapeutic drug monitoring of anticancer drugs part two: targeted therapies[J]. Eur J Cancer, 2014, 50(12): 2020-2036. [百度学术]
Dreesen E, Bossuyt P, Mulleman D, et al. Practical recommendations for the use of therapeutic drug monitoring of biopharmaceuticals in inflammatory diseases[J]. Clin Pharmacol, 2017, 9: 101-111. [百度学术]
Regazzi M, Joseè G, Molinaro M. Monoclonal antibody monitoring: clinically relevant aspects, a systematic critical review[J]. Ther Drug Monit, 2019, 42(1): 1. doi: 10.1097/FTD.0000000000000681. [百度学术]
Zhang XL, Miao LY, Chen WQ. The expert consensus on the Standards of Therapeutic Drug Monitoring (2019 Edition)[J]. Eval Anal Drug Use Hosp China(中国医院用药评价与分析), 2019, 19(8): 897-898. [百度学术]
Darrouzain F, Bian SM, Desvignes C, et al. Immunoassays for measuring serum concentrations of monoclonal antibodies and anti-biopharmaceutical antibodies in patients[J]. Ther Drug Monit, 2017, 39(4): 316-321. [百度学术]
Bloem K, Hernández-Breijo B, Martínez-Feito A, et al. Immunogenicity of therapeutic antibodies: monitoring antidrug antibodies in a clinical context[J]. Ther Drug Monit, 2017, 39(4): 327-332. [百度学术]
Zhang SW, Jian WY. Recent advances in absolute quantification of peptides and proteins using LC-MS[J]. Rev Anal Chem, 2014, 33(1): 31-47. [百度学术]
Willrich MA, Murray DL, Barnidge DR, et al. Quantitation of infliximab using clonotypic peptides and selective reaction monitoring by LC-MS/MS[J]. Int Immunopharmacol, 2015, 28(1): 513-520. [百度学术]
Todoroki K, Mizuno H, Sugiyama E, et al. Bioanalytical methods for therapeutic monoclonal antibodies and antibody-drug conjugates: a review of recent advances and future perspectives[J]. J Pharm Biomed Anal, 2020, 179: 112991. [百度学术]
van den Broek I, van Dongen WD. LC-MS-based quantification of intact proteins: perspective for clinical and bioanalytical applications[J]. Bioanalysis, 2015, 7(15): 1943-1958. [百度学术]
Bults P, Spanov B, Olaleye O, et al. Intact protein bioanalysis by liquid chromatography - High-resolution mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1110/1111: 155-167. [百度学术]
Kleinnijenhuis AJ, Toersche JH, Frédérique L, et al. A generic sample preparation approach for LC–MS/MS bioanalysis of therapeutic monoclonal antibodies in serum applied to Infliximab[J]. J Appl Bioanal, 2015, 1(1): 26-34. [百度学术]
Wang Q, Han JB, Sha CJ, et al. Novel strategy using tryptic peptide immunoaffinity-based LC-MS/MS to quantify denosumab in monkey serum[J]. Bioanalysis, 2017, 9(19): 1451-1463. [百度学术]
Peng XY, Liu BN, Li YT, et al. Development and validation of LC-MS/MS method for the quantitation of infliximab in human serum[J]. Chromatographia, 2015, 78(7/8): 521-531. [百度学术]
Jenkins R, Duggan JX, Aubry AF, et al. Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics[J]. AAPS J, 2015, 17(1): 1-16. [百度学术]
VDGJGrace, Bressler B, Demarco ML. An automated mass spectrometric blood test for therapeutic drug monitoring of infliximab[J]. Clin Mass Spectrom, 2019, 12: 16-22. [百度学术]
Iwamoto N, Takanashi M, Yokoyama K, et al. Multiplexed monitoring of therapeutic antibodies for inflammatory diseases using Fab-selective proteolysis nSMOL coupled with LC-MS[J]. J Immunol Methods, 2019, 472: 44-54. [百度学术]
Mouchahoir T, Schiel JE. Development of an LC-MS/MS peptide mapping protocol for the NISTmAb[J]. Anal Bioanal Chem, 2018, 410(8): 2111-2126. [百度学术]
Chiu HH, Tsai IL, Lu YS, et al. Development of an LC-MS/MS method with protein G purification strategy for quantifying bevacizumab in human plasma[J]. Anal Bioanal Chem, 2017, 409(28): 6583-6593. [百度学术]
Ouyang Z, Furlong MT, Wu S, et al. Pellet digestion: a simple and efficient sample preparation technique for LC-MS/MS quantification of large therapeutic proteins in plasma[J]. Bioanalysis, 2012, 4(1): 17-28. [百度学术]
Wilffert D, Bischoff R, van de Merbel NC. Antibody-free workflows for protein quantification by LC-MS/MS[J]. Bioanalysis, 2015, 7(6): 763-779. [百度学术]
Mesmin C, Fenaille F, Ezan E, et al. MS-based approaches for studying the pharmacokinetics of protein drugs[J]. Bioanalysis, 2011, 3(5): 477-480. [百度学术]
Shibata K, Naito T, Okamura J, et al. Simple and rapid LC-MS/MS method for the absolute determination of cetuximab in human serum using an immobilized trypsin[J]. J Pharm Biomed Anal, 2017, 146: 266-272. [百度学术]
Echan LA, Tang HY, Ali-Khan N, et al. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma[J]. Proteomics, 2005, 5(13): 3292-3303. [百度学术]
Liu GW, Zhao Y, Angeles A, et al. A novel and cost effective method of removing excess albumin from plasma/serum samples and its impacts on LC-MS/MS bioanalysis of therapeutic proteins[J]. Anal Chem, 2014, 86(16): 8336-8343. [百度学术]
Amrani ME, van den Broek MP, Göbel C, et al. Quantification of active infliximab in human serum with liquid chromatography-tandem mass spectrometry using a tumor necrosis factor alpha-based pre-analytical sample purification and a stable isotopic labeled infliximab bio-similar as internal standard: a target-based, sensitive and cost-effective method[J]. J Chromatogr A, 2016, 1454: 42-48. [百度学术]
Vialaret J, Broutin S, Pugnier C, et al. What sample preparation should be chosen for targeted MS monoclonal antibody quantification in human serum [J]? Bioanalysis, 2018, 10(10): 723-735. [百度学术]
Chiu HH, Liao HW, Shao YY, et al. Development of a general method for quantifying IgG-based therapeutic monoclonal antibodies in human plasma using protein G purification coupled with a two internal standard calibration strategy using LC-MS/MS[J]. Anal Chim Acta, 2018, 1019: 93-102. [百度学术]
Dubois M, Fenaille F, Clement G, et al. Immunopurification and mass spectrometric quantification of the active form of a chimeric therapeutic antibody in human serum[J]. Anal Chem, 2008, 80(5): 1737-1745. [百度学术]
van den Broek I, Niessen WM, van Dongen WD. Bioanalytical LC-MS/MS of protein-based biopharmaceuticals[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2013, 929: 161-179. [百度学术]
Jourdil JF, Lebert D, Gautier-Veyret E, et al. Infliximab quantitation in human plasma by liquid chromatography-tandem mass spectrometry: towards a standardization of the methods?[J]. Anal Bioanal Chem, 2017, 409(5): 1195-1205. [百度学术]
Zheng J, Mehl J, Zhu YX, et al. Application and challenges in using LC-MS assays for absolute quantitative analysis of therapeutic proteins in drug discovery[J]. Bioanalysis, 2014, 6(6): 859-879. [百度学术]
Vasicek LA, Spellman DS, Hseih SC, et al. Quantitation of a therapeutic antibody in serum using intact sequential affinity capture, trypsin digestion and LC-MS/MS[J]. Anal Chem, 2018, 90(1): 866-871. [百度学术]
Nouri-Nigjeh E, Zhang M, Ji T, et al. Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein[J]. Anal Chem, 2014, 86(7): 3575-3584. [百度学术]
Damen CW, de Groot ER, Heij M, et al. Development and validation of an enzyme-linked immunosorbent assay for the quantification of trastuzumab in human serum and plasma[J]. Anal Biochem, 2009, 391(2): 114-120. [百度学术]
Gui LL, Li L, Dong LH, et al. Method development and validation of LC-MS/MS-based assay for the simultaneous quantitation of trastuzumab and pertuzumab in cynomolgus monkey serum and its application in pharmacokinetic study[J]. Biomed Chromatogr, 2020, 34(12): e4903. doi: 10.1002/bmc.4903. [百度学术]
Willeman T, Jourdil JF, Gautier-Veyret E, et al. A multiplex liquid chromatography tandem mass spectrometry method for the quantification of seven therapeutic monoclonal antibodies: Application for adalimumab therapeutic drug monitoring in patients with Crohn's disease[J]. Anal Chim Acta, 2019, 1067: 63-70. [百度学术]
Hahne H, Pachl F, Ruprecht B, et al. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments[J]. Nat Methods, 2013, 10(10): 989-991. [百度学术]
Zheng J, Mehl J, Zhu YX, et al. Application and challenges in using LC-MS assays for absolute quantitative analysis of therapeutic proteins in drug discovery[J]. Bioanalysis, 2014, 6(6): 859-879. [百度学术]
Bronsema KJ, Bischoff R, Pijnappel WW, et al. Absolute quantification of the total and antidrug antibody-bound concentrations of recombinant human α-glucosidase in human plasma using protein G extraction and LC-MS/MS[J]. Anal Chem, 2015, 87(8): 4394-4401. [百度学术]
Rai AJ, Gelfand CA, Haywood BC, et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples[J]. Proteomics, 2005, 5(13): 3262-3277. [百度学术]
Zhou N, Wang J, Ding L. Common issues and counterplans on LC-MS analysis of peptides and proteins in bio-samples[J]. J China Pharm Univ(中国药科大学学报), 2010,41(5): 401-407. [百度学术]
Zhang HW, Xin BM, Caporuscio C, et al. Bioanalytical strategies for developing highly sensitive liquid chromatography/tandem mass spectrometry based methods for the peptide GLP-1 agonists in support of discovery PK/PD studies[J]. Rapid Commun Mass Spectrom, 2011, 25(22): 3427-3435. [百度学术]
Ji QC, Rodila R, El-Shourbagy TA. A sample preparation process for LC-MS/MS analysis of total protein drug concentrations in monkey plasma samples with antibody[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 847(2): 133-141. [百度学术]