摘要
体内代谢物轮廓变化与外界刺激密切相关,代谢物的浓度可以直接反映生物体生理或病理状态。LC-MS是内源性代谢物定量测定的主要分析方法,但由于检测偏向性问题,该方法存在分析覆盖面窄、灵敏度较低等不足。近年来,化学衍生化技术与LC-MS的整合应用发展迅速,与氨基、羟基、羧基、羰基、巯基等基团靶向反应的各类衍生化试剂已被广泛应用于代谢组学研究。本文根据代谢物基团分类介绍了各种衍生化反应及其在代谢组学分析中的应用,综述了多基团衍生化方法的特点,并对衍生化分析方法的应用前景和挑战进行了展望。
代谢组学的研究对象为生物体内的小分子代谢物,其相对分子质量通常小于1000。由于代谢物结构各异、数量繁多,这导致部分代谢物色谱分离困难、不易离子化等结果。因此,在分析复杂生物样品时,传统基于LC-MS的代谢组学方法在测定物质的种类、数量与灵敏度等方面的表现并不理想。化学衍生化技术与LC-MS的整合应用可以调整待测物色谱保留、提高质谱响应。衍生化试剂的结构通常由3个部分组成,分别为反应基团、色谱改性基团与质谱增敏基团。其中反应基团化学性质活泼,与代谢物分子中特定的官能团靶向反应;色谱改性基团可以改善物质极性,进而优化其色谱行为;质谱增敏基团能够提供特征的离子碎片,提升质谱信号强度。待测物质经衍生化后,其色谱分离度和检测灵敏度均显著提高,故近年来衍生化技术越来越多地被应用于靶向代谢组学LC-MS分析方法的开发。本文基于代谢物官能团分类,总结了衍生化试剂单独使用与组合使用的研究进展,并对未来的发展方向进行了展望。
氨基酸、核苷酸、吲哚等氨基类物质在生物体内含量丰富,且具有重要的生理功能。氨基电负性强,化学性质活泼,易与衍生化试剂结构中正电性的位点结合,发生亲核取代或亲核加成反应。氨基类衍生化试剂大致可以分为:酰氯

Figure 1 Representative derivatization reagents for amino
羟基类代谢物极性大,难以在反相色谱系统中实现分离,且该类物质的质谱检测多为负离子模式,质谱响应较低。通过化学衍生化引入色谱改性与质谱增敏基团可以有效地改善色谱分离,提升质谱响应。羟基类衍生化试剂大致可以分为:酰氯

Figure 2 Representative derivatization reagents for hydroxyl
生物体内含有多类羧基代谢物,例如三羧酸循环及β-氧化等能量代谢通路会产生大量的小分子有机酸;此外,高级脂肪酸如花生四烯酸及其下游代谢产物,它们在机体炎症反应与免疫调节中发挥着重要的作用。针对羧基易与氨基发生酰胺化反应的特点,研究人员构建了多种含有氨基的衍生化反应体系,代表性的衍生化试剂如

Figure 3 Representative derivatization reagents for carboxyl
羰基化合物化学性质较稳定且不易离子化,故该类物质难以被质谱检出。目前,羰基类衍生化试剂的反应原理为羰基腙化反应(见

Figure 4 Representative derivatization reagents for carbonyl
不同价态的巯基类代谢物在生物体内会发生互相转化,通常作为电子载体参与氧化还原反应。此外,巯基具有高度的还原性,在空气中极易被氧化,这极大地增加了该类物质准确分析测定的难度。目前在代谢组学研究中关于巯基的衍生化反应报道较少,主要的衍生化试剂为N-乙基马来酰亚胺,反应原理如

Figure 5 Representative derivatization reagents for hydrosulphonyl
柱前衍生化可以相对自由地选择反应条件,不受反应动力学限制,允许多步反应的进行,是目前代谢组学研究中最为常用的衍生化方法。上述各类衍生化试剂及其应用实例均采用了柱前衍生化方式。然而,柱前衍生化容易引入杂质,过量的衍生化试剂进入仪器时可能对产物检测造成干扰,尤其在LC-MS靶向代谢组学中,与检测器不兼容的衍生化试剂需要进行反应后处理。为避免冗余的衍生化试剂进入质谱造成强烈的基质效应。目前已开发了多种衍生化反应后处理方法,Li课题组为了解决丹磺酰氯与丹磺酰肼衍生化试剂与质谱仪器不兼容的难题,利用氢氧化钠和氯化铜分别水解两种衍生化试剂,水解产物在反相色谱柱上不保留,从而消除了反应剩余的衍生化试剂对衍生化产物测定的影
单一衍生化试剂的使用能够改善物质的色谱分离与质谱响应,但是受限于化学反应的专属性,一类衍生化试剂往往只能与相对应的基团反应,导致检测覆盖范围有限。靶向多类基团的组合衍生化反应策略有助于进一步扩大代谢物检测范围,且目前已有多个衍生化试剂联用的代谢组学研究实例。多基团衍生化的典型实验流程如

Figure 6 Typical scheme of multi-derivatization reactio
植物激素在植物的生命历程中发挥着重要作用,同时测定多种植物激素的含量有助于理解植物发育过程中激素的生理功能与调控网络。Cai
“多步法”衍生化方案为衍生化试剂依次与底物反应,一个反应体系中只存在一种衍生化试剂。多步法包括串联法与并联法,串联法为一份生物样本与多种衍生化试剂逐步反应,并联法为多份生物样本与多种衍生化试剂同时反应后分析进样。为了与氨基、羧基、羰基、巯基靶向反应,Yuan
衍生化方法测定生物小分子最早应用于LC-UV分析平台,因此,目前大多数衍生化试剂含有苯环等具有良好紫外吸收的结构。随着仪器不断更新,目前代谢组学的主流分析手段为LC-MS,然而相应的质谱专属衍生化试剂还未见报道。Xiao
常用的生物样本前处理方法包括蛋白沉淀法、液液萃取法、固相萃取法等。Wu
尽管衍生化反应能够优化代谢物的分离与检测结果,但是现阶段该方法依然存在时间成本增加和可能引入副产物等缺陷。未来随着高效、专属、符合绿色化学要求的新型衍生化试剂的开发,衍生化技术将在靶向代谢组学研究领域中具有更广泛的应用前景。
References
Guo HM, Jiao Y, Wang X, et al. Twins labeling-liquid chromatography/mass spectrometry based metabolomics for absolute quantification of tryptophan and its key metabolites[J]. J Chromatogr A, 2017, 1504: 83-90. [百度学术]
Shortreed MR, Lamos SM, Frey BL, et al. Ionizable isotopic labeling reagent for relative quantification of amine metabolites by mass spectrometry[J]. Anal Chem, 2006, 78(18): 6398-6403. [百度学术]
Wagner M, Ohlund LB, Shiao TC, et al. Isotope-labeled differential profiling of metabolites using N-benzoyloxysuccinimide derivatization coupled to liquid chromatography/high-resolution tandem mass spectrometry[J]. Rapid Commun Mass Spectrom, 2015, 29(18): 1632-1640. [百度学术]
Ji CJ, Li WL, Ren XD, et al. Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates[J]. Anal Chem, 2008, 80(23): 9195-9203. [百度学术]
Willacey CCW, Naaktgeboren M, Lucumi Moreno E, et al. LC-MS/MS analysis of the central energy and carbon metabolites in biological samples following derivatization by dimethylaminophenacyl bromide[J]. J Chromatogr A, 2019, 1608: 460413. [百度学术]
Lkhagva A, Shen CC, Leung YS, et al. Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2020, 1610: 460536. [百度学术]
Takayama T, Mizuno H, Toyo'oka T, et al. Isotope corrected chiral and achiral nontargeted metabolomics: an approach for high accuracy and precision metabolomics based on derivatization and its application to cerebrospinal fluid of patients with Alzheimer's disease[J]. Anal Chem, 2019, 91(7): 4396-4404. [百度学术]
Zhao S, Luo X, Li L. Chemical isotope labeling LC-MS for high coverage and quantitative profiling of the hydroxyl submetabolome in metabolomics[J]. Anal Chem, 2016, 88(21): 10617-10623. [百度学术]
Achaintre D, Buleté A, Cren-Olivé C, et al. Differential isotope labeling of 38 dietary polyphenols and their quantification in urine by liquid chromatography electrospray ionization tandem mass spectrometry[J]. Anal Chem, 2016, 88(5): 2637-2644. [百度学术]
Liu CX, Sheng X, Wang YM, et al. A sensitive approach for simultaneous quantification of carbonyl and hydroxyl steroids using 96-well SPE plates based on stable isotope coded- derivatization-UPLC-MRM: method development and application[J]. RSC Adv, 2018, 8(35): 19713-19723. [百度学术]
Fukui S, Takayama T, Toyo'oka T, et al. An accurate differential analysis of carboxylic acids in beer using ultra high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry based on chiral derivatization combining three isotopic reagents[J]. Talanta, 2019, 205: 120146. [百度学术]
Marquis BJ, Louks HP, Bose C, et al. A new derivatization reagent for HPLC-MS analysis of biological organic acids[J]. Chromatographia, 2017, 80(12): 1723-1732. [百度学术]
Jiang RQ, Jiao Y, Zhang P, et al. Twin derivatization strategy for high-coverage quantification of free fatty acids by liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2017, 89(22): 12223-12230. [百度学术]
Bian XQ, Li N, Tan BB, et al. Polarity-tuning derivatization-LC-MS approach for probing global carboxyl-containing metabolites in colorectal cancer[J]. Anal Chem, 2018, 90(19): 11210-11215. [百度学术]
Kim KJ, Park HG, Hwang CH, et al. Quantitative targeted metabolomics for 15d-deoxy-Δ12, 14-PGJ2 (15d-PGJ2) by MALDI-MS[J]. Biotechnol Bioproc E, 2017, 22(1): 100-106. [百度学术]
Zhao S, Dawe M, Guo K, et al. Development of high-performance chemical isotope labeling LC-MS for profiling the carbonyl submetabolome[J]. Anal Chem, 2017, 89(12): 6758-6765. [百度学术]
Deng P, Higashi RM, Lane AN, et al. Quantitative profiling of carbonyl metabolites directly in crude biological extracts using chemoselective tagging and nanoESI-FTMS[J]. Analyst, 2017, 143(1): 311-322. [百度学术]
Ortmayr K, Schwaiger M, Hann S, et al. An integrated metabolomics workflow for the quantification of sulfur pathway intermediates employing thiol protection with N-ethyl maleimide and hydrophilic interaction liquid chromatography tandem mass spectrometry[J]. Analyst, 2015, 140(22): 7687-7695. [百度学术]
Zhang Y, Kang A, Deng HS, et al. Simultaneous determination of sulfur compounds from the sulfur pathway in rat plasma by liquid chromatography tandem mass spectrometry: application to the study of the effect of Shao Fu Zhu Yu decoction[J]. Anal Bioanal Chem, 2018, 410(16): 3743-3755. [百度学术]
Xu PY, Yang Y, Su MX, et al. Determination of endogenous glutathione in rat plasma by a new derivative LC-MS/MS method [J]. J China Pharm Univ(中国药科大学学报), 2018, 49(12): 209-214. [百度学术]
Zhao S, Li L. Dansylhydrazine isotope labeling LC-MS for comprehensive carboxylic acid submetabolome profiling[J]. Anal Chem, 2018, 90(22): 13514-13522. [百度学术]
Gomez-Gomez A, Soldevila A, Pizarro N, et al. Improving liquid chromatography-tandem mass spectrometry determination of polycarboxylic acids in human urine by chemical derivatization. Comparison of o-benzyl hydroxylamine and 2-picolyl amine[J]. J Pharm Biomed Anal, 2019, 164: 382-394. [百度学术]
Li YQ, Bao Y. Content comparison of 18 amino acids in plancenta histolysate determined by post-column derivatization cation-exchange chromatography and pre-column derivatization HPLC[J]. China Pharm(中国药师), 2016, 19(10): 1830-1846. [百度学术]
Zhao S, Li H, Han W, et al. Metabolomic coverage of chemical-group-submetabolome analysis: group classification and four-channel chemical isotope labeling LC-MS[J]. Anal Chem, 2019, 91(18): 12108-12115. [百度学术]
Cai WJ, Yu L, Wang W, et al. Simultaneous determination of multiclass phytohormones in submilligram plant samples by one-pot multifunctional derivatization-assisted liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2019, 91(5): 3492-3499. [百度学术]
Yuan BF, Zhu QF, Guo N, et al. Comprehensive profiling of fecal metabolome of mice by integrated chemical isotope labeling-mass spectrometry analysis[J]. Anal Chem, 2018, 90(5): 3512-3520. [百度学术]
Huang YZ, Jiao Y, Gao YQ, et al. An extendable all-in-one injection twin derivatization LC-MS/MS strategy for the absolute quantification of multiple chemical-group-based submetabolomes[J]. Anal Chim Acta, 2019, 1063: 99-109. [百度学术]
Huang TJ, Toro M, Lee R, et al. Multi-functional derivatization of amine, hydroxyl, and carboxylate groups for metabolomic investigations of human tissue by electrospray ionization mass spectrometry[J]. Analyst, 2018, 143(14): 3408-3414. [百度学术]
Xiao HM, Cai WJ, Ye TT, et al. Spatio-temporal profiling of abscisic acid, indoleacetic acid and jasmonic acid in single rice seed during seed germination[J]. Anal Chim Acta, 2018, 1031: 119-127. [百度学术]
An ZL, Hu T, Lv Y, et al. Targeted amino acid and related amines analysis based on iTRA
Wu Q, Xu YM, Ji HC, et al. Enhancing coverage in LC-MS-based untargeted metabolomics by a new sample preparation procedure using mixed-mode solid-phase extraction and two derivatizations[J]. Anal Bioanal Chem, 2019, 411(23): 6189-6202. [百度学术]
Zhao XN, He YR, Zhu SY, et al. Stable isotope labeling derivatization and magnetic dispersive solid phase extraction coupled with UHPLC-MS/MS for the measurement of brain neurotransmitters in post-stroke depression rats administrated with gastrodin[J]. Anal Chim Acta, 2019, 1051: 73-81. [百度学术]