摘要
甲磺酸乐伐替尼(LF)是一种多靶点酪氨酸酶抑制剂,主要用于治疗多种肿瘤。因其溶出过程中发生凝胶化而导致溶出度下降,生物利用度低。本研究通过旋蒸法制得甲磺酸乐伐替尼-黄芩素(LF-BAI)共无定形物(物质的量比为1∶1),以提高LF溶出度的同时消除其凝胶化。利用偏光显微观察、粉末X射线衍射法、差示扫描量热法、傅里叶变换红外光谱等手段进行表征,结果表明,共旋蒸产物为单相的共无定形物(Tg=118 ℃)。溶出试验发现LF-BAI共无定形可有效地消除LF在溶出过程中的凝胶化,且与LF晶体、BAI晶体相比,LF和BAI的溶出速率分别提高了2.2倍和25.4倍。稳定性试验表明,LF-BAI共无定形物在25 ℃/60%RH和40 ℃/75%RH条件下稳定至少90 d,表现出良好的物理稳定性。
目前,75%的候选药物存在水溶性差、生物利用度低的问题,严重影响其临床疗
甲磺酸乐伐替尼(lenvatinib mesylate,LF,

Figure 1 Chemical structures of lenvatinib mesylate (LF) (A) and baicalein (BAI) (B)
LF原料药(纯度:99.9%,南京方生和医药有限公司);BAI(纯度:99.8%,上海曙灿实业有限公司);磷酸(色谱纯,阿拉丁试剂有限公司);甲醇(分析纯,无锡亚盛化工有限公司);乙酸铵(分析纯,淄博名聚化工有限公司);乙腈(色谱纯,上海安谱试验科技股份有限公司);试验用水为Milli-Q水纯化系统(Millipore,美国)滤过水;其余试剂为分析纯。
采用旋转蒸发法制备LF-BAI共无定形物。将LF与BAI按1∶1的物质的量比投料,称取LF原料药1.2 g和BAI 0.5 g于烧杯中,加入甲醇200 mL,溶解,0.22 μm滤膜过滤后,在45 ℃下旋转蒸发去除溶剂。收集产物于25 ℃真空干燥箱中去除残余溶剂,即得LF-BAI共无定形物。
同时使用上述方法制备LF和BAI的单独旋转蒸发产物。将LF原料药与BAI按物质的量比1∶1混合均匀制备物理混合物(PM)。
分别取LF晶体、BAI晶体以及制备的LF-BAI共旋转蒸发产物、LF和BAI的单独旋转蒸发产物适量置于载玻片上,用液体石蜡均匀分散开,在40×10倍偏光显微镜下观察,图像信息用D3K-MS软件采集。
分别取LF晶体、BAI晶体、LF-BAI共旋转蒸发产物、LF-BAI物理混合物PM约200 mg过200目筛网后,使用X射线衍射仪进行观测,以Cu靶Kα射线为光源,使用石墨单色仪和0.3 mm单针孔准直仪,以反射模式进行样品的PXRD测量。管电压和电流强度分别设定为40 kV和40 mA,测定波长为1.540 6 Å,步长0.02°,扫描速度为2(°)/min,收集3~40°/2θ范围内的谱图。
采用差示扫描热分析仪对LF晶体、BAI晶体、LF-BAI共旋转蒸发产物、LF-BAI物理混合物PM进行热行为测试。将上述样品置于坩埚中,升温速率10 ℃/min,范围为50~300 ℃,氮气保护,流速20 mL/min,数据用PerkinElmer Thermal Analysis软件处理。
2.2.4 傅里叶红外光谱法(Fourier transform infrared spectroscopy,FTIR)分别取LF晶体、BAI晶体、LF-BAI共旋转蒸发产物、LF-BAI物理混合物PM与KBr研匀,压成透明薄片,于红外测定仪中在4 000~400 c
精密称取LF-BAI共旋转蒸发产物10 mg于100 mL量瓶中,加甲醇溶解定容至刻度,摇匀。采用以下高效液相检测方法检测,记录峰面积,计算以确证旋蒸产物的结合比例,上述样品平行测定3份。
采用Ultimate LP C18色谱柱(4.6 mm×250 mm,5 μm),检测波长为244 nm,以0.1%磷酸水溶液(乙酸铵调节pH至4.5)-90%乙腈(40∶60)为流动相,流速为1.0 mL/min,柱温为30 ℃,进样体积为10 μL。
LF的线性范围是4~100 μg/mL,BAI的线性范围是0.2~100 μg/mL,具有良好的线性。该方法分离度良好,重复性好,准确度高。
特性溶出时药物与溶出介质接触面固定,可以清晰地反映出单位时间内单位面积药物的溶出特
(1) |
其中,IDR为特性溶出速率(mg∙mi
2.5.2 过饱和粉末溶出(supersaturated dissolution)按照《中华人民共和国药典》(2015版)通则0931第三法小杯法的条件进行过饱和条件下溶出,以PBS(pH 3.0) 250 mL为溶出介质,温度为37 ℃,转速为50 r/min,分别取过量的LF晶体、BAI晶体、LF-BAI共无定形物和PM粉末过80目筛后,投入溶出介质中,并在5、10、15、30、45 min及1、2、4、6、8、12和24 h时取样3 mL,并及时补充等温溶出介质3 mL。取出后的溶液经0.22 μm亲水PTFE微孔滤膜过滤,适当稀释后使用高效液相法按照上述色谱条件进行分析,每组样品平行测定3份。
如

Figure 2 Polarizing microscope pictures of crystalline LF (A), crystalline BAI (B), rotary evaporation product of LF (C), rotary evaporation product of BAI (D) and rotary evaporation product of LF-BAI (E)
由

Figure 3 X-ray powder diffractograms for crystalline LF (a), crystalline BAI (b), LF-BAI physical mixture (c) and coamorphous LF-BAI (d)
各样品的DSC结果如

Figure 4 Differential scanning calorimetry thermograms for crystalline LF (a), crystalline BAI (b), LF-BAI physical mixture (c) and coamorphous LF-BAI (d)
从

Figure 5 Fourier transform infrared spectroscopy spectra for crystalline LF (a), crystalline BAI (b), LF-BAI physical mixture (c) and coamorphous LF-BAI (d)
通过对LF和BAI的含量计算可以得出,LF的含量为理论含量的(101.34±0.27)%,BAI的含量为理论含量的(100.52±0.84)%,符合理论投样量的比例,可证实BAI和LF按照物质的量比1∶1结合。
LF晶体在溶出30 min时LF片表面就完全凝胶化,PM片在溶出约1 h后有凝胶生成,使药片体积膨胀从蜂蜡中掉出,而将LF与BAI制成共无定形物后,溶出全程中未见有凝胶生成,见

Figure 6 Intrinsic dissolution phenomenon of crystalline LF tablet, physical mixture (PM) tablet and coamorphous (CM) tablet in PBS (pH 3.0) solution

Figure 7 Intrinsic dissolution of (A) LF, and (B) BAI from crystalline raw material, physical mixture (PM) and coamorphous (CM) system in PBS (pH 3.0) solution
BAI在PBS(pH 3.0)中溶出较差,45 min仍未检出溶出量,PM中的BAI也显示出较低的溶出度,但由于溶出1 h后PM片掉出,导致后期溶出速率略高于晶体。而CM中的BAI则显示出良好的溶出特性,10 min时即可检测到,前1 h溶出速率保持恒定,为BAI晶体的25.4倍。至80 min后溶出速率稍有下降,溶出曲线呈现凹形,原因可能是CM发生转晶和部分药片掉落后与介质接触面积增大的双重作用结果。
为了测量共无定形体系中LF和BAI的亚稳态溶解度,并确定它们在再结晶前保持的过饱和浓度时间跨度,研究粉末在过饱和条件下的溶出。过饱和溶出投样后,可以观察到LF和PM在溶出介质表面围绕着桨形成凝胶,30 min后药物全部形成片状凝胶,该凝胶发生团聚从界面上沉淀下来,形成团聚的片状凝胶,如

Figure 8 Supersaturated dissolution phenomenon of crystalline LF, LF-BAI physical mixture (PM) and coamorphous (CM) in PBS (pH 3.0) solution

Figure 9 Supersaturated dissolution of (A) LF, and (B) BAI form crystalline raw material, physical mixture (PM) and coamorphous (CM) system in PBS (pH 3.0) solution
观察溶出后的干燥样品(如

Figure 10 X-ray powder diffractogram (A) and polarizing microscope picture (B) for coamorphous LF-BAI dry powder after supersaturated dissolution
由

Figure 11 Polarizing microscope pictures of coamorphous LF-BAI under long-term testing condition

Figure 12 PXRD patterns of coamorphous LF-BAI under long-term testing condition (A) and accelerated testing condition (B)

Figure 13 Polarizing microscope pictures of coamorphous LF-BAI under accelerated testing condition
本试验采用旋转蒸发法成功制得LF-BAI共无定形物,单一的玻璃化转变温度(Tg)为118.0 ℃,与LF原料药易出现溶出凝胶化的现象不同,LF-BAI共无定形物在溶出过程中粉末均匀分散在介质中,不形成凝胶。且与LF晶体、BAI晶体相比,LF和BAI的溶出速率分别提高了2.2倍和25.4倍。稳定性试验表明,所制备的LF-BAI共无定形物在加速与长期试验条件下均具有良好的稳定性。这种将难溶性药物LF和合适的配体制成共无定形后具有提高其溶解度及溶出度的优势,且可以有效地抑制LF的凝胶生成,为LF的进一步开发和临床应用提供了新的物质基础。
References
Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development[J]. Drug Discov Today, 2012, 17(9/10): 486-495. [百度学术]
Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems[J]. Acta Pharm Sin B, 2019, 9(1): 19-35. [百度学术]
Lu WD, Rades T, Rantanen J, et al. Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying[J]. Int J Pharm, 2019, 565: 1-8. [百度学术]
Moinuddin SM, Ruan SD, Huang YT, et al. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling:enhanced physical stability,dissolution and pharmacokinetic profile[J]. Int J Pharm, 2017, 532(1): 393-400. [百度学术]
Guo HH,Miao NN,Li TF,et al.Pharmaceutical coamorphous:a newly defined single-phase amorphous binary system[J].Prog Chem(化学进展),2014,26(2/3):478-486. [百度学术]
Qian S,Heng WL,Wei YF,et al.Coamorphous lurasidone Hydrochloride-saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior[J].Cryst Growth Des,2015,15(6):2920-2928. [百度学术]
Qian S,Li Z,Heng WL,et al.Charge-assisted intermolecular hydrogen bond formed in coamorphous system is important to relieve the pH-dependent solubility behavior of lurasidone hydrochloride[J].RSC Adv,2016,6(108):106396-106412. [百度学术]
Bao XJ,Chen X,Wang SR,et al.Coamorphous combinations of poorly water-soluble drugs dabigatran etexilate mesylate and tadalafil for improving dissolution and physical stability[J].J China Pharm Univ (中国药科大学学报),2019,50(5):549-559. [百度学术]
Qian S, Wang SS, Li Z, et al. Charge-assisted bond
Heng WL, Su ML, Cheng H, et al. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride[J]. Mol Pharm, 2020, 17(1): 84-97. [百度学术]
Hong DS, Kurzrock R, Falchook GS, et al. Phase 1b study of lenvatinib (E7080) in combination with temozolomide for treatment of advanced melanoma[J]. Oncotarget, 2015, 6(40): 43127-43134. [百度学术]
Matsui J, Funahashi Y, Uenaka T, et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase[J]. Clin Cancer Res, 2008, 14(17): 5459-5465. [百度学术]
Molina AM, Hutson TE, Larkin J, et al. A phase 1b clinical trial of the multi-targeted tyrosine kinase inhibitor lenvatinib (E7080) in combination with everolimus for treatment of metastatic renal cell carcinoma (RCC)[J]. Cancer Chemother Pharmacol, 2014, 73(1): 181-189. [百度学术]
Ikeda M, Okusaka T, Mitsunaga S, et al. Safety and pharmacokinetics of lenvatinib in patients with advanced hepatocellular carcinoma[J]. Clin Cancer Res, 2016, 22(6): 1385-1394. [百度学术]
Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(7): 621-630. [百度学术]
Lorusso L, Newbold K. Lenvatinib: a new option for the treatment of advanced iodine refractory differentiated thyroid cancer?[J]. Future Oncol, 2015, 11(12): 1719-1727. [百度学术]
Wang L, Ling Y, Chen Y, et al. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells[J]. Cancer Lett, 2010, 297(1): 42-48. [百度学术]
Motoo Y, Sawabu N. Antitumor effects of saikosaponins, baicalin and baicalein on human hepatoma cell lines[J]. Cancer Lett, 1994, 86(1): 91-95. [百度学术]
Huang YT, Zhang BW, Gao Y, et al. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability[J]. J Pharm Sci, 2014, 103(8): 2330-2337. [百度学术]
Löbmann K, Flouda K, Qiu DW, et al. The influence of pressure on the intrinsic dissolution rate of amorphous indomethacin[J]. Pharmaceutics, 2014, 6(3): 481-493. [百度学术]
Liu ML,Niang XT,M.Iinuma,et al.The structure of rehderianin I, a correction[J].Acta Pharm Sin (药学学报),1986,21(9):706-707. [百度学术]