摘要
寻找中国仓鼠卵巢(CHO)细胞染色体上稳定表达位点是解决CHO细胞长期培养表达不稳定问题的有效手段。本课题组前期利用慢病毒转染将示踪基因(Zsgreen1)整合CHO细胞染色体上并发现多个潜在稳定表达位点。本研究验证了其中一个位点稳定表达外源蛋白的能力,该位点位于染色体NW_003614241.1上148 052~148 157 bp区域。首先观察Zsgreen1基因的表达情况,随后采用CRISPR/Cas9技术将增强绿色荧光蛋白(EGFP)基因定点整合至该位点,获得3株EGFP基因定点整合的细胞,经60代悬浮培养,细胞荧光强度无明显变化,证明此位点可稳定表达EGFP基因。采用同样方法构建了表达人血清白蛋白(HSA)基因的重组CHO细胞株,经Western blot验证,此位点可分泌表达HSA,表明上述位点可定点整合和稳定表达外源蛋白。
中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞是当前生物制药领域广泛使用的宿主细胞,生产了超过70%的治疗性蛋白
初始位点的选择对后期的稳定表达起着决定性作用,经过多年的研究发现了一些潜在热点,如人纤维肉瘤细胞HT1080中14号染色体上的Ighg2基因、21号染色体上Grik1基因中第12个外显子—第13个内含子区
本研究团队前期敲除了Bcl-2家族中促凋亡Bak和Bax基因获得了抗凋亡特性明显提升的Ba
为探究NW_003614241.1位点稳定表达外源蛋白的能力,本研究首先观察了于NW_003614241.1第148 118 bp处随机整合Zsgreen1的细胞株(1g11)Zsgreen1基因表达情况。接着同样应用研究团队构建的抗凋亡Ie3细胞
无内毒素质粒小提中量试剂盒(北京天根生化科技有限公司);BbsⅠ-HF外切酶、T7核酸内切酶Ⅰ(美国NEB公司);T4 DNA连接酶(美国Promega公司);DMEM/F12培养基、胎牛血清(美国Gibco公司);1 × 无菌磷酸盐缓冲液(美国HyClone公司);CD CHO培养基粉末(美国Irvine公司);基因组DNA小量抽提试剂盒(碧云天生物技术研究所);L-谷氨酰胺、嘌呤霉素、SanPrep柱式PCR产物纯化试剂盒(上海生工生物工程有限公司);高保真DNA聚合酶(南京诺唯赞生物科技有限公司);蛋白酶K(北京索莱宝科技有限公司);Lipofectamin
靶向识别序列sgRNA位于NW_003614241.1中148 052~148 157 bp范围内。首先构建sgRNA质粒,设计引物sgRNA-F和sgRNA-R在以下体系进行退火:sgRNA-F 4 μL、sgRNA-R 4 μL、NEBuffer2 2 μL、ddH2O 10 μL,水浴95 ℃ 5 min,水浴锅中自然降至室温。Psk-U6-gRNA质粒载体37 ℃水浴经BbsⅠ-HF酶切4 h后,使用SanPrep柱式PCR产物纯化试剂盒回收载体酶切片段。最后,将退火后的sgRNA片段通过T4 DNA连接酶在16 ℃过夜条件下连接至Psk-U6-gRNA载体上。
将构建好的sgRNA质粒和CD513B-Cas9质粒按物质的量比1.8∶1用Lipofectamin
The underlined part is the BbsⅠ-HF restriction site
sgRNA 5′-ACCCTTGTGCCCCAAAGACAGGG-3′引导Cas9复合物切割位置在染色体NW_003614241.1第148 097 bp处,上下游的两段长度为600 bp的DNA序列分别为5′同源臂和3′同源臂。EGFP供体质粒和HSA供体质粒由苏州金唯智生物科技有限公司化学合成。EGFP供体质粒在5′同源臂和3′同源臂之间设计绿色荧光基因表达盒(hPGK-EGFP-SV40 polyA)和嘌呤霉素基因表达盒(EF1α-PuroR-SV40 polyA),在5′同源臂上游有红色荧光基因表达盒(CMV-mCherry-SV40 polyA)。HSA供体质粒在5′同源臂和3′同源臂之间设计包括人血清白蛋白表达盒(CMV-HSA-SV40 polyA)、绿色荧光基因表达盒(hPGK-EGFP-SV40 polyA)和嘌呤霉素基因表达盒(EF1α-PuroR-SV40 polyA),在5′同源臂上游有红色荧光基因表达盒(CMV-mCherry-SV40 polyA)。质粒图谱如

Figure 1 Map of donor plasmid
A: Map of EGFP donor plasmid; B: Map of HSA donor plasmid
基因敲入体系主要包括sgRNA质粒、Cas9质粒和供体质粒(EGFP质粒/HSA供体质粒)。sgRNA靶向识别位点,在Cas9复合物的作用下通过同源修复将供体质粒5′同源臂和3′同源臂之间的元件整合至细胞基因组内,红色荧光基因设计在5′同源臂外侧,用于排除随机整合事件,定点整合成功的目的细胞株会表达HSA蛋白、绿色荧光蛋白及嘌呤霉素,且不表达红色荧光蛋白,外源基因定点整合示意图见

Figure 2 Schematic of exogenous gene site-specific integration into Ba
A: Schematic of EGFP gene site-specific integration into Ie3 genome; B: Schematic of HSA gene site-specific integration into Ie3 genome
将构建好的sgRNA质粒、CD513B-Cas9质粒和供体质粒(EGFP质粒/HSA供体质粒)按物质的量比1.8∶1∶1.8,用Lipofectamin
在重组细胞中PCR扩增验证5′同源臂侧靶位点定点整合外源蛋白EGFP或HSA的正反向引物分别为5′同源臂-F和5′同源臂-R;在重组细胞中PCR扩增验证3′同源臂侧靶位点定点整合外源基因EGFP的正反向引物分别为3′同源臂-EF和3′同源臂-R;在重组细胞中PCR扩增验证3′同源臂侧靶位点定点整合外源基因HSA的正反向引物分别为3′同源臂-HF和3′同源臂-R。引物所在位置如
绿色荧光报告蛋白(ZsGreen1)和增强型绿色荧光蛋白(EGFP)组合使用倒置荧光显微镜和流式细胞仪检测,倒置荧光显微镜拍摄条件为曝光时间1 s,增益为2 ×,拍摄多个视野,使用Image J软件分析细胞平均荧光强度;流式细胞仪检测以Ie3为阴性对照,消化后的细胞用磷酸盐缓冲液重悬,上样量为1 × 1
人血清白蛋白(HSA)是血浆中含量最丰富的蛋白,约占血浆总蛋白的60%,作为血浆扩容剂用途广泛,且基于其无免疫原性、相对分子质量大及半衰期长等优点,多用于白蛋白融合技术延长其他激素、抗体等的半衰
为了验证NW_003614241.1位点的稳定性,首先检测慢病毒随机整合示踪基因Zsgreen1的Ba

Figure 3 Expression of green fluorescent protein stability in 1g11 adherent cells
A: Bright field and fluorescence field photos of 1g11 adherent cells of different generations; B: Image J analyzes the average fluorescence mean intensity of cells in bright field photos; C: Green fluorescence intensity of 1g11 adherent cells of different generations
检测sgRNA在Ie3细胞内的实际编辑情况,PCR扩增转染后细胞池的Cas9切割位点上下游的序列,用T7核酸内切酶Ⅰ对PCR产物酶切验证,如果细胞内发生了基因编辑事件,DNA会同源定向修复在切开缺口处发生错配,T7核酸内切酶Ⅰ可以识别并切割发生错配的DNA双链。PCR扩增片段大小为850 bp,切割后理论上会出现302 bp和547 bp两条条带,琼脂糖凝胶电泳图结果如

Figure 4 Results of sgRNA editing efficiency verification
A: Agarose gel electrophoresis of T7E1 digests of PCR products of cell pool genome transfected with plasmid sgRNA and CD513B-Cas9, M: DL2000 marker, 1: PCR products of Ie3 cell pool transfected with plasmid sgRNA and CD513B-Cas9, 2: T7E1 digests PCR products of Ie3 cell pool transfected with plasmid sgRNA and CD513B-Cas9; B: Sequencing of genomic PCR products of Ie3 cells transfected with sgRNA and CD513B-Cas9 plasmid
测序结果(
根据所设计的敲入整合策略,成功发生定点整合事件的细胞株表达EGFP,表现为只发绿色荧光;发生随机整合事件的细胞株可能既表达EGFP也表达mCherry或只表达mCherry,表现为既发绿色荧光也发红色荧光或只发红光;未发生整合事件的细胞株不发荧光。收集转染后细胞用流式细胞仪进行分选的结果如

Figure 5 Ba
提取单克隆细胞基因组进行PCR验证,如PCR产物的电泳图(

Figure 6 PCR verification results of Ba
A: Results of 5′junction PCR (M: DL 2000 DNA Marker, 1: EGFP-Ie3-19, 2: EGFP-Ie3-48, 3:EGFP-Ie3-51); B: Results of 3′junction PCR (M: DL 5000 DNA Marker,1: EGFP-Ie3-19, 2: EGFP-Ie3-48, 3: EGFP-Ie3-51); C: Results of out-out PCR (M: DL 5000 DNA Marker, 1: EGFP-Ie3-19, 2: EGFP-Ie3-48, 3: EGFP-Ie3-51,4: Ie3 (negative control))
对悬浮驯化成功的EGFP-Ie3-19、EGFP-Ie3-48、EGFP-Ie3-51 3株细胞,每隔15代用流式细胞仪检测绿色荧光蛋白表达情况,如

Figure 7 Flow cytometric analysis results of Ba
A: Green fluorescence intensity of EGFP-Ie3-19 cells of different generations; B: Green fluorescence intensity of EGFP-Ie3-48 cells of different generations; C: Green fluorescence intensity of EGFP-Ie3-51 cells of different generations; D: Comparison result of green fluorescence intensity among EGFP-Ie3-19, EGFP-Ie3-48 and EGFP-Ie3-51
利用CRISPR/Cas9技术将可分泌表达的人血清白蛋白HSA基因整合到Ie3细胞染色体的NW_003614241.1上的第148 097 bp处,经Dot blot筛选最终得到3株阳性克隆HSA-Ie3-4、HSA-Ie3-52和HSA-Ie3-61。通过PCR验证外源基因的整合情况,通过Western blot检测培养上清液中HSA的分泌表达情况,结果如

Figure 8 PCR and Western blot detection of HSA gene expression on adherent cells
A: Results of 5′junction PCR (M: DL 5 000 DNA Marker, 1: HSA-Ie3-4, 2: HSA-Ie3-52, 3: HSA-Ie3-61); B: Results of 3′junction PCR (M: DL 10 000 DNA Marker, 1: HSA-Ie3-4, 2: HSA-Ie3-52, 3: HSA-Ie3-61); C: Results of out-out PCR (M: DL 10 000 DNA Marker, 1: HSA-Ie3-4, 2: HSA-Ie3-52, 3: HSA-Ie3-61, 4: Ie3 (negative control)); D: Western blot results of HSA gene expression in adherent cells (M: Molecular mass marker, 1: HSA-Ie3-4, 2: HSA-Ie3-52, 3: HSA-Ie3-61, Exposure time 30 s)
近年来,关于如何解决CHO细胞表达外源蛋白的不稳定这一问题,研究人员已经进行了多方面的尝试。传统的随机整合方法,不能从根本上消除基因组的固有不稳定性及整合位点不稳定这两个因素,而寻找CHO细胞基因组内的稳定位点,将外源基因通过定点整合的方式整合至位置已知的位
本课题组前期利用慢病毒转染及染色体步移技术发现的多个潜在稳定表达位点中,有的位点,Zsgreen1报告基因的表达受培养条件的制约,无血清培养条件下Zsgreen1表达水平大大降低;有的位点,序列中含有较多的未知碱基无法进行编
染色体NW_003614241.1上148 052 ~ 148 157 bp区域也是本课题组利用慢病毒转染及染色体步移技术发现的CHO细胞基因组内新的表达位点之
本研究所获得的成功定点整合到此位点的6株阳性单克隆均为杂合子,单拷贝的外源基因会影响表达水平。通过联合利用其他位点进行在多个位点定点整合同一外源基因,或者通过在该位点插入着陆垫,利用Bxb1重组酶系统在着陆垫上插入多拷贝,或者利用IRES序列将外源基因串连整合表达,都可能通过增加目的基因的拷贝数,有效提高外源基因的表达水
References
Fischer S,Handrick R,Otte K. The art of CHO cell engineering: a comprehensive retrospect and future perspectives[J]. Biotechnol Adv,2015,33:1878-1896. [百度学术]
Peng L,Yu X,Cai YF,et al. Research advances of recombinant coagulation factor VII expression and synthesizing mechanism[J].J China Pharm Univ(中国药科大学学报),2015,46(5):623-628. [百度学术]
Hamaker NK,Lee KH. Site-specific integration ushers in a new era of precise CHO cell line engineering[J]. Curr Opin Chem Eng,2018,22:152-160. [百度学术]
Lee JS,Grav LM,Pedersen LE,et al. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment[J]. Biotechnol Bioeng,2016,113(11):2518-2523. [百度学术]
Cheng JK,Lewis AM,Kim DS,et al. Identifying and retargeting transcriptional hot spots in the human genome[J]. Biotechnol J,2016,11(8):1100-1109. [百度学术]
Yang L. Study on site-specific integration and expression of human serum albumin in CHO-K1 cell genome[D].Jiangnan University,2020. [百度学术]
Zhou ST. Study of site-specific integration of therapeutic protein genes into CHO genome and stable expression[D].Jiangnan University,2019. [百度学术]
Plesingerova H,Janovska P,Mishra A,et al. Expression of COBLL1 encoding novel ROR1 binding partner is robust predictor of survival in chronic lymphocytic leukemia[J]. Haematologica,2018,103(2):313-324. [百度学术]
Chen ZF,Yu HJ,Shi X,et al. Functional screening of candidate causal genes for insulin resistance in human preadipocytes and adipocytes[J]. Circ Res,2020,126(3):330-346. [百度学术]
Sharma V,Sharma I,Sethi I,et al. Replication of newly identified type 2 diabetes susceptible loci in Northwest Indian population[J]. Diabetes Res Clin Pract,2017,126:160-163. [百度学术]
Park JW,Jang HJ,Shin S,et al. Molecular analysis of alternative transcripts of the equine cordon-bleu WH2 repeat protein-like 1 (COBLL1) gene[J]. Asian-Australas J Anim Sci,2015,28(6):870-875. [百度学术]
Chauhan D,Bartok E,Gaidt MM,et al. BAX/BAK-induced apoptosis results in caspase-8-dependent IL-1beta maturation in macrophages[J]. Cell Rep,2018,25(9):2354-2368. [百度学术]
O'Neill KL,Huang K,Zhang JJ,et al. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane[J]. Genes Dev,2016,30(8):973-988. [百度学术]
Zhao SQ,Zhang Y,Tian H,et al. Expression and bioactivity of recombinant 3DHSA-Nartograstim fusion protein in Pichia pastoris[J]. J China Pharm Univ(中国药科大学学报),2013,44(6):577-582. [百度学术]
Bailey LA,Hatton D,Field R,et al. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture[J]. Biotechnol Bioeng,2012,109(8):2093-2103. [百度学术]
Shin SW,Lee JS. Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells[J]. Biotechnol Bioeng,2020,117(6):1895-1903. [百度学术]
Zhou ST,Ding XF,Yang L,et al. Discovery of a stable expression hot spot in the genome of Chinese hamster ovary cells using lentivirus-based random integration[J]. Biotechnol Biotec Eq,2019,33(1):605-612. [百度学术]
Gaidukov L,Wroblewska L,Teague B,et al. A multi-landing pad DNA integration platform for mammalian cell engineering[J]. Nucleic Acids Res,2018,46(8):4072-4086. [百度学术]