摘要
由于高血糖引起代谢障碍导致的氧化应激、感染、血管病变、炎症和神经病变,使得糖尿病(diabetes mellitus,DM)患者往往伤口愈合不良,发生糖尿病足溃疡(diabetic foot ulcers,DFUs),严重的可导致截肢。通过对糖尿病创面愈合过程和病理生理学的深入了解,可以获得治疗创伤损伤的有效策略。近年来,纳米制剂在加速糖尿病伤口愈合中有广泛的应用。一方面纳米颗粒有利于伤口愈合,另一方面可用于递送一种或多种治疗药物,如生长因子、核酸、抗生素和抗氧化剂,使它们可以在目标组织内持续释放。本文综述了近年来各种纳米制剂在促进糖尿病创面愈合方面的应用和作用机制。
糖尿病是一种慢性非传染性疾病,目前已成为日益严峻的全球性公共卫生问题。截至2019年,4.63亿成年人患有糖尿病,预计到2030年这一数字将增加到5.78
目前糖尿病患者伤口的基础治疗包括清创和清除感染;同时有湿性敷料、高压氧治疗、负压伤口治疗、皮肤移植、干细胞移植、人类生长因子和组织工程等新型生物治疗策
正常伤口愈合过程包括4个相互关联、相互重叠的阶段:止血、炎症、增生和组织重
神经病变(神经损伤)、感染和血管病变(血流量不足)是糖尿病伤口难愈的病理生理学原因。糖尿病周围神经病变(diabetic peripheral neuropathy, DPN)主要由于高血糖引起的微血管病变、代谢障碍、氧化应激等所致。微血管病变使得血管扩张减少和血管收缩增强,这种神经内膜微血管的功能变化加剧了神经内膜的缺氧,进而导致DPN。长期高血糖状态刺激醛糖还原酶和山梨醇脱氢酶生成增加,导致细胞内积累大量的山梨醇和果糖,使细胞内渗透压升高,神经施万细胞和毛细血管细胞水肿、变性、坏
糖尿病患者存在一定的血管病变,血管生成因子(如TGF-β、FGF2、VEGF)和血管抑制因子(如血小板反应素、内皮抑制素)之间处于不平衡状态,新生血管的异常凋亡以及高血糖和慢性炎症造成内皮祖细胞归巢功能受损,最终导致血管损伤,再生能力不足,造成伤口愈合损伤。
高血糖是细菌生长的良好培养基,主要是需氧革兰氏阳性球菌,如金黄色葡萄球菌和β-溶血性链球菌。同时,糖尿病患者免疫系统受损,主要表现为白细胞功能缺陷和形态改变,这些加重了糖尿病患者感染风
纳米颗粒直径在1 ~ 100 nm不等,如今被广泛应用于生物医学、药物递送、材料科学、环境治理和再生能源等领域。在伤口愈合领域,基于纳米颗粒的伤口愈合疗法也表现出新的前景和效益。由于纳米材料的特性,纳米颗粒有利于伤口愈合或者可作为无机骨架包封运载药
碳基纳米材料包括富勒烯、碳纳米角、碳纳米管和石墨烯。在伤口愈合领域,富勒烯和石墨烯通过改善伤口愈合的炎症期与增生期可达到治疗效果。富勒烯有强大的抗菌和抗炎作用,可以中和活性氧与活性
使用陶瓷纳米颗粒中含有的二氧化硅及其衍生物,钙盐和羟磷灰石可运用于伤口愈
Gan
生物活性玻璃由SiO2、Na2O、CaO和P2O5等组成,研究发现,其离子产物通过促进巨噬细胞表达M2表型,并刺激巨噬细胞表达更多的抗炎和血管生成生长因子,促进成纤维细胞增殖和肉芽组织生长,进而促进糖尿病创面愈
银纳米颗粒(silver nanoparticles,AgNPs)具有广谱抗菌活性,对真菌、细菌、酵母甚至病毒都有抗菌活性,可用于预防糖尿病伤口感染。猪接触性皮炎模型揭示,AgNPs可显著增加炎症细胞的凋亡和降低促炎因子水
金纳米颗粒(gold nanoparticles,Au NPs)具有抗氧化性,可以抑制脂质过氧化,防止形成活性氧,对DFUs的治疗非常有
白蛋白修饰的硫化铜纳米颗粒具有制备简单、成本低、毒性小、生物相容性好等优点。将此纳米颗粒作为光热治疗试剂,不仅发挥硫化铜纳米颗粒优越的抗菌活性,而且具备良好光热性能,已成功用于治疗糖尿病伤口感
另外氧化铈纳米颗粒(CeO2NPs)和氧化锌纳米颗粒(ZnONPs)也可运用于伤口愈合。CeO2NPs可促进细胞增殖和血管形成,在动物模型中有很好的促伤口愈合作
聚合物分为天然聚合物,包括蛋白质(胶原蛋白、明胶、蚕丝、角蛋白和天然橡胶蛋白等)及多糖(甲壳素、壳聚糖、淀粉、海藻酸盐、纤维素和透明质酸等),和合成聚合物[聚乳酸-羟基乙酸(PLGA)、聚己内酯和聚乙二醇等]。他们由于其优良的力学性能、生物相容性、生物降解性和非免疫原
PLGA水解的代谢单体乳酸和乙醇酸容易通过柠檬酸循环被人体代谢掉,以及乳酸可促进血管新
壳聚糖是氨基葡萄糖和N-乙酰氨基葡萄糖通过β-1,4-糖苷键连接形成,是几丁质一种活性去乙酰化形式,因具有良好的生物相容性和生物可降解性,并且具有止血、组织再生、无毒、无免疫原性、刺激成纤维细胞增殖和抗菌活性,在伤口愈合中有广泛的应用。Sun
传统的脂质体是脂质双分子层围绕一个亲水内核。而脂质纳米颗粒则不同,它拥有致密电子的内核,内核中阳离子/可电离的脂质与多阴离子的RNA通过静电吸附作用自组装呈倒置胶
纳米递送载体在递送、保护和缓释药物、延长有效药物作用时间方面具有多种优势,现分类归纳见
近年来,纳米颗粒作为药物递送系统的潜力已经被广泛证明。药物递送纳米颗粒的优点是用途广泛、尺寸可控、合成方法能耗和成本较低、比表面积大、靶向能力较强,能够持续稳定地缓释药物,减缓药物降解,降低全身吸收,减少不良反应,增强药物渗透,最终提高治疗效果。与传统抗生素相比,基于纳米颗粒的抗菌治疗更有可能消除细菌产生的耐药性。但是这些纳米颗粒和纳米复合材料离获得临床应用仍然存在一定距离,首先获取高纯度纳米颗粒具有一定的难度,其次,部分纳米颗粒会损伤肝、肾等器官,因而还需要进一步研究它们的毒性、安全性、药代动力学和组织生物学分布,为其临床应用提供更多的理论和实验依据。
References
Saeedi P,Petersohn I,Salpea P,et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas,9th edition[J]. Diabetes Res Clin Pract,2019,157:107843. [百度学术]
Lim JZ,Ng NS,Thomas C. Prevention and treatment of diabetic foot ulcers[J]. J R Soc Med,2017,110(3):104-109. [百度学术]
Sayiner ZA,Can FI,Akarsu E. Patients' clinical charecteristics and predictors for diabetic foot amputation[J]. Prim Care Diabetes,2019,13(3):247-251. [百度学术]
Baltzis D,Eleftheriadou I,Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus:new insights[J]. Adv Ther,2014,31(8):817-836. [百度学术]
Hamdan S,Pastar I,Drakulich S,et al. Nanotechnology-driven therapeutic interventions in wound healing:potential uses and applications[J]. ACS Cent Sci,2017,3(3):163-175. [百度学术]
Whittam AJ,Maan ZN,Duscher D,et al. Challenges and opportunities in drug delivery for wound healing[J]. Adv Wound Care (New Rochelle),2016,5(2):79-88. [百度学术]
Goyal R,Macri LK,Kaplan HM,et al. Nanoparticles and nanofibers for topical drug delivery[J]. J Control Release,2016,240:77-92. [百度学术]
Son YJ,Tse JW,Zhou Y,et al. Biomaterials and controlled release strategy for epithelial wound healing[J]. Biomater Sci,2019,7(11):4444-4471. [百度学术]
Malone-Povolny MJ,Maloney SE,Schoenfisch MH. Nitric oxide therapy for diabetic wound healing[J]. Adv Healthc Mater,2019,8(12):e1801210. [百度学术]
Wang NQ,Yang XY,Du GH. Advances in research on mechanisms of diabetic wound healing[J]. Acta Pharm Sin (药学学报),2020,55(12):2811-2817. [百度学术]
Hesketh M,Sahin KB,West ZE,et al. Macrophage phenotypes regulate scar formation and chronic wound healing[J]. Int J Mol Sci,2017,18(7):1545. [百度学术]
Akita S. Wound repair and regeneration:mechanisms,signaling[J]. Int J Mol Sci,2019,20(24):6328. [百度学术]
Childs DR,Murthy AS. Overview of wound healing and management[J]. Surg Clin North Am,2017,97(1):189-207. [百度学术]
Reinke JM,Sorg H. Wound repair and regeneration[J]. Eur Surg Res,2012,49(1):35-43. [百度学术]
Guo S,Dipietro LA. Factors affecting wound healing[J]. J Dent Res,2010,89(3):219-229. [百度学术]
Zhao RL,Liang H,Clarke E,et al. Inflammation in chronic wounds[J]. Int J Mol Sci,2016,17(12):2085. [百度学术]
Niimi N,Yako H,Takaku S,et al. Aldose reductase and the polyol pathway in Schwann cells:old and new problems[J]. Int J Mol Sci,2021,22(3):1031. [百度学术]
Ezhilarasu H,Vishalli D,Dheen ST,et al. Nanoparticle-based therapeutic approach for diabetic wound healing[J]. Nanomaterials,2020,10(6):1234. [百度学术]
Tang WH,Martin KA,Hwa J. Aldose reductase,oxidative stress,and diabetic mellitus[J]. Front Pharmacol,2012,3:87. [百度学术]
Feldman EL,Callaghan BC,Pop-Busui R,et al. Diabetic neuropathy[J]. Nat Rev Dis Primers,2019,5(1):41. [百度学术]
Roca-Agujetas V,de Dios C,Lestón L,et al. Recent insights into the mitochondrial role in autophagy and its regulation by oxidative stress[J]. Oxid Med Cell Longev,2019,2019:3809308. [百度学术]
Pang L,Lian X,Liu H,et al. Understanding diabetic neuropathy:focus on oxidative stress[J]. Oxid Med Cell Longev,2020,2020:9524635. [百度学术]
Pitocco D,Spanu T,Di Leo M,et al. Diabetic foot infections:a comprehensive overview[J]. Eur Rev Med Pharmacol Sci,2019,23(2 suppl):26-37. [百度学术]
Tocco I,Zavan B,Bassetto F,et al. Nanotechnology-based therapies for skin wound regeneration[J]. J Nanomater,2012,2012:1-11. [百度学术]
Zhou Z. Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents[J]. Pharmaceutics,2013,5(4):525-541. [百度学术]
Hosseini A,Sharifzadeh M,Rezayat SM,et al. Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy[J]. Int J Nanomedicine,2010,5:517-523. [百度学术]
Gao J,Wang HL,Iyer R. Suppression of proinflammatory cytokines in functionalized fullerene-exposed dermal keratinocytes[J]. J Nanomater,2010,2010:1-9. [百度学术]
Zhou ZG,Joslin S,Dellinger A,et al. A novel class of compounds with cutaneous wound healing properties[J]. J Biomed Nanotechnol,2010,6(5):605-611. [百度学术]
Chakraborty S,Ponrasu T,Chandel S,et al. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications[J]. R Soc Open Sci,2018,5(5):172017. [百度学术]
Fu JP,Zhang Y,Chu J,et al. Reduced graphene oxide incorporated acellular dermal composite scaffold enables efficient local delivery of mesenchymal stem cells for accelerating diabetic wound healing[J]. ACS Biomater Sci Eng,2019,5(8):4054-4066. [百度学术]
Li J,Zhou C,Luo C,et al. N-acetyl cysteine-loaded graphene oxide-collagen hybrid membrane for scarless wound healing[J]. Theranostics,2019,9(20):5839-5853. [百度学术]
Kalashnikova I,Das S,Seal S. Nanomaterials for wound healing:scope and advancement[J]. Nanomedicine (Lond),2015,10(16):2593-2612. [百度学术]
Lansdown ABG. Calcium:a potential central regulator in wound healing in the skin[J]. Wound Repair Regen,2002,10(5):271-285. [百度学术]
Kawai K,Larson BJ,Ishise H,et al. Calcium-based nanoparticles accelerate skin wound healing[J]. PLoS One,2011,6(11):e27106. [百度学术]
Gan J,Liu C,Li H,et al. Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors[J]. Biomaterials,2019,219:119340. [百度学术]
Leal EC,Carvalho E,Tellechea A,et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype[J]. Am J Pathol,2015,185(6):1638-1648. [百度学术]
Yan D,Liu S,Zhao X,et al. Recombinant human granulocyte macrophage colony stimulating factor in deep second-degree burn wound healing[J]. Medicine (Baltimore),2017,96(22):e6881. [百度学术]
Gan J,Dou Y,Li Y,et al. Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors[J]. Biomaterials,2018,178:95-108. [百度学术]
Lin C,Mao C,Zhang J,et al. Healing effect of bioactive glass ointment on full-thickness skin wounds[J]. Biomed Mater,2012,7(4):045017. [百度学术]
Dong X,Chang J,Li H. Bioglass promotes wound healing through modulating the paracrine effects between macrophages and repairing cells[J]. J Mater Chem B,2017,5(26):5240-5250. [百度学术]
Nadworny PL,Landry BK,Wang J,et al. Does nanocrystalline silver have a transferable effect[J]? Wound Repair Regen,2010,18(2):254-265. [百度学术]
Zhang XF,Liu ZG,Shen W,et al. Silver nanoparticles:synthesis,characterization,properties,applications,and therapeutic approaches[J]. Int J Mol Sci,2016,17(9):1534. [百度学术]
Liu X,Lee PY,Ho CM,et al. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing[J]. ChemMedChem,2010,5(3):468-475. [百度学术]
Brem H,Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes[J]. J Clin Invest,2007,117(5):1219-1222. [百度学术]
Ai J,Biazar E,Jafarpour M,et al. Nanotoxicology and nanoparticle safety in biomedical designs[J]. Int J Nanomedicine,2011,6:1117-1127. [百度学术]
Orlowski P,Zmigrodzka M,Tomaszewska E,et al. Polyphenol-conjugated bimetallic Au@AgNPs for improved wound healing[J]. Int J Nanomed,2020,15:4969-4990. [百度学术]
Choudhury H,Pandey M,Lim YQ,et al. Silver nanoparticles:Advanced and promising technology in diabetic wound therapy[J]. Mater Sci Eng C Mater Biol Appl,2020,112:110925. [百度学术]
Barathmanikanth S,Kalishwaralal K,Sriram M,et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice[J]. J Nanobiotechnology,2010,8:16. [百度学术]
Li SH,Tang QY,Xu HB,et al. Improved stability of KGF by conjugation with gold nanoparticles for diabetic wound therapy[J]. Nanomed Lond Engl,2019,14(22):2909-2923. [百度学术]
Randeria PS,Seeger MA,Wang XQ,et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown[J]. Proc Natl Acad Sci U S A,2015,112(18):5573-5578. [百度学术]
Zhao Y,Cai QL,Qi W,et al. BSA-CuS nanoparticles for photothermal therapy of diabetic wound infection in vivo[J]. ChemistrySelect,2018,3(32):9510-9516. [百度学术]
Augustine R,Hasan A,Patan NK,et al. Cerium oxide nanoparticle incorporated electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes for diabetic wound healing applications[J]. ACS Biomater Sci Eng,2020,6(1):58-70. [百度学术]
Zgheib C,Hilton SA,Dewberry LC,et al. Use of cerium oxide nanoparticles conjugated with MicroRNA-146a to correct the diabetic wound healing impairment[J]. J Am Coll Surg,2019,228(1):107-115. [百度学术]
Lin PH,Sermersheim M,Li HC,et al. Zinc in wound healing modulation[J]. Nutrients,2017,10(1):16. [百度学术]
Chandika P,Ko SC,Jung WK. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration[J]. Int J Biol Macromol,2015,77:24-35. [百度学术]
Porporato PE,Payen VL,De Saedeleer CJ,et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice[J]. Angiogenesis,2012,15(4):581-592. [百度学术]
Danhier F,Ansorena E,Silva JM,et al. PLGA-based nanoparticles:an overview of biomedical applications[J]. J Control Release,2012,161(2):505-522. [百度学术]
Chereddy KK,Coco R,Memvanga PB,et al. Combined effect of PLGA and curcumin on wound healing activity[J]. J Control Release,2013,171(2):208-215. [百度学术]
Hasan N,Cao J,Lee J,et al. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix[J]. Mater Sci Eng C Mater Biol Appl,2019,103:109741. [百度学术]
Gourishetti K,Keni R,Nayak PG,et al. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats[J]. Int J Nanomedicine,2020,15:9265-9282. [百度学术]
Sun M,Xie Q,Cai X,et al. Preparation and characterization of epigallocatechin gallate,ascorbic acid,gelatin,chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice[J]. Int J Biol Macromol,2020,148:777-784. [百度学术]
Ribeiro MC,Correa VLR,FKLDSilva,et al. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model[J]. Eur J Pharm Sci,2020,150:105330. [百度学术]
Guevara ML,Persano S,Persano F. Lipid-based vectors for therapeutic mRNA-based anti-cancer vaccines[J]. Curr Pharm Des,2019,25(13):1443-1454. [百度学术]
Cullis PR,Hope MJ. Lipid nanoparticle systems for enabling gene therapies[J]. Mol Ther,2017,25(7):1467-1475. [百度学术]
Guevara ML,Persano F,Persano S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy[J]. Front Chem,2020,8:589959. [百度学术]
Kasiewicz LN,Whitehead KA. Lipid nanoparticles silence tumor necrosis factor α to improve wound healing in diabetic mice[J]. Bioeng Transl Med,2019,4(1):75-82. [百度学术]
Saporito F,Sandri G,Bonferoni MC,et al. Essential oil-loaded lipid nanoparticles for wound healing[J]. Int J Nanomedicine,2018,13:175-186. [百度学术]