摘要
肿瘤细胞通过代谢重编程满足其特殊的物质和能量需求。现有肿瘤代谢重编程研究以糖代谢研究为主,而氨基酸代谢在肿瘤细胞的增殖、迁移、侵袭方面也发挥了重要作用,是肿瘤能量代谢研究的新兴热点。半胱氨酸是一种生糖氨基酸,其代谢途径涉及多种酶和产物,可调节诸如氧化应激、能量代谢和细胞自噬等生理和病理过程。本文从肿瘤细胞中半胱氨酸的外源转运和内源性转化途径、半胱氨酸代谢途径对肿瘤发生发展的多种调控机制以及基于半胱氨酸代谢途径的潜在治疗靶点等方面进行了综述,为肿瘤临床用药提供理论依据。
自1920年奥托·瓦伯格发现瓦伯格效应,肿瘤代谢重编程的研究已经超过了一百年。肿瘤代谢重编程是肿瘤发生、发展过程中关键特征之
近年来的研究表明,谷氨酰胺是潜在的肿瘤生物标志
半胱氨酸在肿瘤细胞外主要以胱氨酸(Cys-S-S-Cys)形式存在,经胱氨酸转运体转运至细胞内,由于细胞内呈高度还原状态,胱氨酸被还原成半胱氨酸,参与合成谷胱甘肽(GSH)、硫化氢(H2S)、3-巯基丙酮酸、同型半胱氨酸等有机物,介导肿瘤的增殖、生长、转移和耐
免疫组织化学实验显示,乳腺癌组织中SLC3A1表达量为癌旁组织的1.5倍,Kaplan-Meier生存分析发现,SLC3A1高表达的Ⅲ期患者生存率较低表达的患者减少20%,表明SLC3A1介导的半胱氨酸摄取促进乳腺癌进
肿瘤细胞内半胱氨酸的水平不仅依赖于胱氨酸转运蛋白的导入也与内源性转化,即将甲硫氨酸转化为半胱氨酸的转硫途径密切相关。转硫途径中,甲硫氨酸经S-腺苷甲硫氨酸、S-腺苷-L-同型半胱氨酸转化成同型半胱氨酸,在胱硫醚-β-合成酶(cystathionine β-synthase,CBS)催化下与丝氨酸缩合生成胱硫醚,再经胱硫醚-γ-裂解酶(cystathionine γ-lyase,CSE)生成半胱氨酸,生成的半胱氨酸除了用于谷胱甘肽合成,还可用于含硫分子合成,经半胱氨酸双加氧酶(cysteine dioxygenase,CDO)、半胱氨酸亚磺酸脱羧酶和次牛磺酸脱氢酶生成牛磺

图1 半胱氨酸代谢途径
SAM:S-腺苷甲硫氨酸; SAH:S-腺苷-L-同型半胱氨酸; CBS:胱硫醚-β-合成酶; CSE:胱硫醚-γ-裂解酶; CTNS:溶酶体胱氨酸转运蛋白; 3-MST:3-巯基丙酮酸硫转移酶; CDO:半胱氨酸双加氧酶; CSAD:半胱氨酸亚磺酸脱羧酶; HTAU-DH:次牛磺酸脱氢酶; GCL:谷氨酸-半胱氨酸连接酶;GS:谷胱甘肽合成酶
转硫途径与卵巢
CBS是抑癌因子HNF4α介导的肝癌上皮间质转化抑制的主要效应物。单独敲低半胱氨酸代谢途径酶CBS和CDO1的肝癌细胞HepG2,E-钙黏蛋白CDH1减少但波形蛋白VIM增加,诱导细胞迁移。说明转硫途径显著抑制HepG2的上皮-间质转化(EMT)和细胞迁移。培养基中回补代谢物牛磺酸、胱硫醚等,细胞迁移受到抑制。推测CBS活性增强后会调节4种主要代谢物(丝氨酸、胱硫醚、同型半胱氨酸和H2S)的含量变化,进而影响EMT和相关的耐药性,并最终影响肿瘤的生长和进
相较于胱氨酸转运体介导的较单一内源性途径,转硫途径涉及的化合物、酶和副产物众多,在半胱氨酸代谢途径调控中占据了主导地位,研究转硫途径中各类前体、代谢产物、副产物的产生和作用机制具有重要意义。
以半胱氨酸为中心的代谢网络,涉及多种代谢物和酶参与氧化应激、能量代谢、细胞自噬的调控。研究半胱氨酸代谢调控肿瘤发生发展的机制,为开发和改进肿瘤诊断工具和肿瘤靶向药物提供了可能性。
氧化应激是肿瘤细胞重要的生物学特征之一。肿瘤细胞往往具有较高的活性氧(reactive oxygen species,ROS)水平,从而造成氧化应激。一定阈值的氧化应激可调节ROS参与激活细胞增殖、分化、衰老、转录因子调节等其他调节通
在肿瘤细胞中ATP依赖性的谷氨酸-半胱氨酸连接酶(glutamate-cysteine ligase,GCL)催化半胱氨酸与谷氨酸结合生成γ-谷氨酰半胱氨酸,谷胱甘肽合成酶(glutathione synthase,GS)催化甘氨酸与γ-谷氨酰半胱氨酸结合最终生成谷胱甘
肿瘤细胞需要一定浓度的NADPH以维持细胞内能量代谢平衡。与正常细胞类似,肿瘤细胞的NADPH来自于磷酸戊糖途径和柠檬酸-丙酮酸循环,而脂肪酸、GSH合成等会消耗NADPH,并且在胱氨酸转运进入细胞后,胱氨酸与消耗NADPH,生成NAD
自噬是细胞在营养压力、低氧应激条件下维持自身稳态的调节机制,主要通过泛素蛋白酶体和溶酶体两种途径,降解非必要组分以获得氨基酸等营养物质和能量,是细胞对抗外界不利环境的自我保护手段。当半胱氨酸缺乏时,肿瘤细胞可藉由溶酶体途径降解无用的蛋白质而获得半胱氨酸,通过溶酶体胱氨酸转运蛋白(cystinosin,CTNS)将半胱氨酸转出溶酶
抗肿瘤治疗包括放疗、化疗和免疫疗法等,但由于靶向性欠佳以及耐药等问题,如何延长肿瘤患者生存期并提高生存质量已成为亟待解决的临床难题。半胱氨酸代谢的多种酶和代谢物是潜在的治疗靶点,研究半胱氨酸代谢途径为肿瘤治疗和新药研发提供重要方向(
CSE是转硫途径生成半胱氨酸的关键酶,在肿瘤细胞增殖、迁移、远端转移方面发挥重要作用。Youness
谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)是含硒的磷脂过氧化酶,通过将脂质氢过氧化物还原为脂质醇,维持胞内的还原状态,保护细胞免受脂质过氧化引起的铁死亡。最新研究发现,疱疹病毒HSV-1感染的小鼠GPX4通过抑制细胞膜脂质过氧化激活cGAS-STING通路,GPX4失活则导致脂质过氧化产生,使得STING第88位半胱氨酸发生羰基化,抑制STING棕榈酰化和由内质网向高尔基体的转
烷化剂RSL3和ML162都是GPX4抑制剂,通过活化的烷基氯与催化中心的硒代半胱氨酸残基共价结合。RSL3可以诱导顺铂耐药头颈癌HN3细胞发生内质网应激,通过PERK-ATF4-SENSN2途径表达p62,细胞对化疗药物敏感性增加,敲低GPX4显著提高了RSL3耐药的HN3细胞对RSL3的敏感
System x
免疫疗法包括免疫检查点的抑制剂与过继细胞疗法(CAR-T),在肿瘤免疫中得到广泛应用,已成为肿瘤治疗的支柱之
半胱氨酸是一种生物体内常见的氨基酸,在氧化应激、能量代谢、细胞铁死亡、细胞自噬方面发挥着重要作用。包含多种代谢产物和副产物的半胱氨酸代谢途径促进或抑制肿瘤细胞增殖、迁移、侵袭,为肿瘤研究提供了新的方向。通过调控半胱氨酸代谢网络中的代谢物和酶,从而实现对肿瘤病理活动的调节,以此进行基础理论研究发现潜在的药物靶点,具有广阔的前景和临床意义。
References
Oresta B,Pozzi C,Braga D,et al. Mitochondrial metabolic reprogramming controls the induction of immunogenic cell death and efficacy of chemotherapy in bladder cancer[J]. Sci Transl Med,2021,13(575):eaba6110. [百度学术]
Xia L,Oyang L,Lin J,et al. The cancer metabolic reprogramming and immune response[J]. Mol Cancer,2021,20(1):28. [百度学术]
Ekici S,Risk BB,Neill SG,et al. Characterization of dysregulated glutamine metabolism in human glioma tissue with
Salamanca-Cardona L,Shah H,Poot AJ,et al. In vivo imaging of glutamine metabolism to the oncometabolite 2-hydroxyglutarate in IDH1/2 mutant tumors[J]. Cell Metab,2017,26(6):830-841.e3. [百度学术]
Fultang L,Gamble LD,Gneo L,et al. Macrophage-derived IL1β and TNFα regulate arginine metabolism in neuroblastoma[J]. Cancer Res,2019,79(3):611-624. [百度学术]
Coothankandaswamy V,Cao S,Xu Y,et al. Amino acid transporter SLC6A14 is a novel and effective drug target for pancreatic cancer[J]. Br J Pharmacol,2016,173(23):3292-3306. [百度学术]
Murphy B,Bhattacharya R,Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease[J]. FASEB J,2019,33(12):13098-13125. [百度学术]
Bonifácio VDB,Pereira SA,Serpa J,et al. Cysteine metabolic circuitries:druggable targets in cancer[J]. Br J Cancer,2021,124(5):862-879. [百度学术]
Okuno S,Sato H,Kuriyama-Matsumura K,et al. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines[J]. Br J Cancer,2003,88(6):951-956. [百度学术]
Yan R,Zhao X,Lei J,et al. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex[J]. Nature,2019,568(7750):127-130. [百度学术]
Hansen CG,Ng YLD,Lam WLM,et al. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1[J]. Cell Res,2015,25(12):1299-1313. [百度学术]
Bailey CG,Ryan RM,Thoeng AD,et al. Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria[J]. J Clin Invest,2011,121(1):446-453. [百度学术]
Kaplan E,Zubedat S,Radzishevsky I,et al. ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment[J]. Proc Natl Acad Sci U S A,2018,115(38):9628-9633. [百度学术]
Jiang Y,Cao Y,Wang Y,et al. Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis[J]. Theranostics,2017,7(4):1036-1046. [百度学术]
Gliddon CM,Shao Z,LeMaistre JL,et al. Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain[J]. J Neurochem,2009,108(2):372-383. [百度学术]
Luo Y,Li W,Ling Z,et al. ASCT2 overexpression is associated with poor survival of OSCC patients and ASCT2 knockdown inhibited growth of glutamine-addicted OSCC cells[J]. Cancer Med,2020,9(10):3489-3499. [百度学术]
Yoo HC,Park SJ,Nam M,et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells[J]. Cell Metab,2020,31(2):267-283. [百度学术]
Sbodio JI,Snyder SH,Paul BD. Regulators of the transsulfuration pathway[J]. Br J Pharmacol,2019,176(4):583-593. [百度学术]
Bhattacharyya S,Saha S,Giri K,et al. Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance[J]. PLoS One,2013,8(11):e79167. [百度学术]
Szabo C,Coletta C,Chao C,et al. Tumor-derived hydrogen sulfide,produced by cystathionine-β-synthase,stimulates bioenergetics,cell proliferation,and angiogenesis in colon cancer[J]. Proc Natl Acad Sci U S A,2013,110(30):12474-12479. [百度学术]
Zhu J,Berisa M,Schwörer S,et al. Transsulfuration activity can support cell growth upon extracellular cysteine limitation[J]. Cell Metab,2019,30(5):865-876. [百度学术]
Xu Q,Li YY,Gao X,et al. HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer[J]. Nat Commun,2020,11(1):3978. [百度学术]
Angelova PR,Abramov AY. Functional role of mitochondrial reactive oxygen species in physiology[J]. Free Radic Biol Med,2016,100:81-85. [百度学术]
Hong H,Wu H,Chen J,et al. Cytotoxicity induced by iodinated haloacetamides via ROS accumulation and apoptosis in HepG-2 cells[J]. Environ Pollut,2018,242(Pt A):191-197. [百度学术]
Stockwell BR,Friedmann Angeli JP,Bayir H,et al. Ferroptosis:a regulated cell death Nexus linking metabolism,redox biology,and disease[J]. Cell,2017,171(2):273-285. [百度学术]
Harris IS,Treloar AE,Inoue S,et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression[J]. Cancer Cell,2015,27(2):211-222. [百度学术]
Wang L,Liu Y,Du T,et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ,2020,27(2):662-675. [百度学术]
Liu X,Olszewski K,Zhang Y,et al. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer[J]. Nat Cell Biol,2020,22(4):476-486. [百度学术]
Machuca-Gayet I,Quinaux T,Bertholet-Thomas A,et al. Bone disease in nephropathic cystinosis:beyond renal osteodystrophy[J]. Int J Mol Sci,2020,21(9):3109. [百度学术]
Paul BD,Sbodio JI,Snyder SH. Cysteine metabolism in neuronal redox homeostasis[J]. Trends Pharmacol Sci,2018,39(5):513-524. [百度学术]
Wan XM,Zheng F,Zhang L,et al. Autophagy-mediated chemosensitization by cysteamine in cancer cells[J]. Int J Cancer,2011,129(5):1087-1095. [百度学术]
Fujisawa T,Rubin B,Suzuki A,et al. Cysteamine suppresses invasion,metastasis and prolongs survival by inhibiting matrix metalloproteinases in a mouse model of human pancreatic cancer[J]. PLoS One,2012,7(4):e34437. [百度学术]
Andrzejewska Z,Nevo N,Thomas L,et al. Cystinosin is a component of the vacuolar
Youness RA,Gad AZ,Sanber K,et al. Targeting hydrogen sulphide signaling in breast cancer[J]. J Adv Res,2021,27:177-190. [百度学术]
Wang YH,Huang JT,Chen WL,et al. Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis[J]. EMBO Rep,2019,20(10):e45986. [百度学术]
Jia M,Qin D,Zhao C,et al. Redox homeostasis maintained by GPX4 facilitates STING activation[J]. Nat Immunol,2020,21(7):727-735. [百度学术]
Motwani M,Pesiridis S,Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease[J]. Nat Rev Genet,2019,20(11):657-674. [百度学术]
Dai E,Han L,Liu J,et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway[J]. Nat Commun,2020,11(1):6339. [百度学术]
Shin D,Kim EH,Lee J,et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer[J]. Free Radic Biol Med,2018,129:454-462. [百度学术]
Bi J,Yang S,Li L,et al. Metadherin enhances vulnerability of cancer cells to ferroptosis[J]. Cell Death Dis,2019,10(10):682. [百度学术]
Eaton JK,Furst L,Ruberto RA,et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles[J]. Nat Chem Biol,2020,16(5):497-506. [百度学术]
Robert SM,Buckingham SC,Campbell SL,et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma[J]. Sci Transl Med,2015,7(289):289ra86. [百度学术]
Chen WT,Liu J. Advances in research on immune checkpoint and its inhibitors in glioma[J]. J China Pharm Univ(中国药科大学学报),2021,52(1):104-112. [百度学术]
Tian JP,Zhang J,Zhou JP,et al. Advances in small molecule inhibitors of PD-1/PD-L1 immune checkpoint pathway[J]. J China Pharm Univ(中国药科大学学报),2019,50(1):1-10. [百度学术]
Lang X,Green MD,Wang W,et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11[J]. Cancer Discov,2019,9(12):1673-1685. [百度学术]
Wang W,Green M,Choi JE,et al. CD
Su Y,Zhao B,Zhou L,et al. Ferroptosis,a novel pharmacological mechanism of anti-cancer drugs[J]. Cancer Lett,2020,483:127-136. [百度学术]