摘要
基于LC-Q-TOF/MS技术探究水杨酸钠对小鼠HEI-OC1毛细胞样细胞中内源性代谢的影响。首先采用不同浓度的水杨酸钠处理HEI-OC1细胞,使用CCK-8法检测细胞存活率的变化。然后观察不同干预时间下水杨酸钠对细胞形态的影响,并利用代谢组学技术进行研究,筛选组间差异代谢产物,分析相关的代谢通路。结果表明,水杨酸钠能够显著抑制HEI-OC1细胞的存活率,且随着浓度的增加,抑制作用增强。同时水杨酸钠能够使细胞形态拉长,并在停止给药后恢复正常。水杨酸钠处理HEI-OC1细胞后共筛选出乳清酸、尿苷、天冬氨酸等18种差异代谢物,主要涉及丙氨酸、天冬氨酸和谷氨酸代谢及嘧啶代谢这两条可能的代谢通路。综上所述,本研究通过代谢组学技术评价了水杨酸钠对HEI-OC1细胞的作用,可为水杨酸钠耳毒性及耳鸣的发生发展研究提供新思路。
关键词
耳鸣是常见的听觉系统疾病。据估计,全世界10%以上的人口在其一生中都有过耳
水杨酸钠通常用于构建耳鸣动物模
代谢组学(metabolomics)是一门新兴的系统生物学研究方法,目前广泛应用于研究生物体内源性小分子代谢物的含量变化,同时对相关的代谢通路进行分析,对探究代谢物与生理病理变化之间的相互关系以及药物治疗机制具有一定的指导意
水杨酸钠(纯度大于99.5%,批号:C2013137,上海阿拉丁生化科技股份有限公司);注射用青霉素钠(山东鲁抗医药股份有限公司);DMEM培养基(美国Thermo Fisher Scientific公司);胎牛血清(美国Hyclone公司);胰蛋白酶(美国Amersco公司);细胞培养耗材(美国Costar公司);CCK-8试剂盒、BCA蛋白检测试剂盒(江苏碧云天生物技术研究所);其他试剂均为市售分析纯。
Triple TOF 5600(美国Sciex公司)配有岛津高效液相仪(日本Shimadzu公司);SynergyH1全功能微孔板检测仪、Lionheart智能活细胞成像分析仪(美国Bio-Tek公司);真空旋转挥干仪、IEC低温高速离心机(美国Thermo公司)。
目前,与耳鸣相关的耳毒性指标较少,通常为行为学相关的主观性指标。本研究以HEI-OC1细胞为研究对象,因缺乏明确的耳毒性相关指标,所以从细胞增殖活性及细胞形态的角度考察了水杨酸钠对HEI-OC1细胞的毒性作用。
采用CCK-8法对HEI-OC1细胞的增殖活性进行检测,以每毫升9 × 1
色谱柱:Waters XBridge Amide(4.6 mm × 100 mm,3.5 μm);柱温:40 ℃;水相(A):5 mmol/L醋酸铵的超纯水,用氨水调节pH至9.0(含5%乙腈);有机相(B):乙腈;流速:0.4 mL/min;分析时间:26.0 min;梯度洗脱:0 ~ 3.0 min(85% B)、3.0 ~ 6.0 min(85% ~ 30% B)、6.0 ~ 15.0 min(30% ~ 2% B)、15.0 ~ 18.0 min(2% B)、18.0 ~ 19.0 min(2% ~ 85% B)、19.0 ~ 26.0 min(85% B)。
选用电喷雾离子源(ESI)负离子模式进行检测,母离子扫描范围:m/z 50 ~ 1 000,子离子扫描范围:m/z 50 ~ 900,离子喷雾电压设定为-4.5 kV,喷雾温度设定为550 ℃,辅助气1、辅助气2和气帘气均为氮气,分别设定为50,30,30 psi(1 psi = 6.895 Pa)。TOF-MS扫描时去簇电压(DP)和碰撞能量(CE)分别设为-100 V和-10 V。进行MS/MS碎裂时,去簇电压和碰撞能量分别设为-100 V和-35 V。
实验分为空白对照组、给药12 h组、给药24 h组、停止给药12 h组以及停止给药24 h。收集生长状态良好的HEI-OC1细胞,以每毫升9 × 1
使用PBS清洗6孔板3 次,加入超纯水320 μL,在-80 ℃反复冻融3次,刮下细胞,转移至1.5 mL EP管中。每个样品各取细胞悬液20 μL进行蛋白定量,剩余的300 μL细胞悬液加入含有15 μg/mL
如上所述进行 ESI 源条件设定。每8个样品进行1次自动校准,此外将所有细胞样品混合作为质控(quality control,QC)样本,每6个样品插入1个QC样品以监测分析的稳定性。利用在线工作站进行数据采集。
本实验室通过标准品的保留时间以及质荷比建立了基于LC-Q-TOF/MS的化合物鉴定库,通过MultiQuant分析软件(Ver 2.0,美国AB SCIEX公司)用于化合物鉴定及积
为了考察水杨酸钠对HEI-OC1细胞的毒性作用,并为后续代谢组给药浓度提供参考,测定了不同浓度的水杨酸钠给药后细胞的活力。结果(

Figure 1 Survival rate of HEI-OC1 cells treated with different concentrations of sodium salicylate (SS) for 24 hours ()
*P < 0.05,
由

Figure 2 Morphological changes of HEI-OC1 cells treated with 20 mmol/L sodium salicylate for different time
A: Control; B: Administration for 12 h; C: Administration for 24 h; D: Withdrawal for 12 h; E: Withdrawal for 24 h
通过质控样本测试LC-Q-TOF/MS的稳定性,分别提取QC样品中10个离子检测。结果表明,10个离子相对保留时间的RSD范围是0.06% ~ 2.50%,而相对峰面积的RSD范围是2.15% ~ 14.02%(

Figure 3 Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) score plots of HEI-OC1 cells treated with 20 mmol/L sodium salicylate for different time
A: PCA model for LC-Q-TOF/MS; B: PLS-DA model for LC-Q-TOF/MSControl: blank; 12 h: Administration for 12 h; 24 h: Administration for 24 h; WD-12 h: Withdrawal for 12 h; WD-24 h: Withdrawal for 24 h
通过代谢组学研究20 mmol/L水杨酸钠在不同干预时间下对HEI-OC1细胞的影响。对各组样本采用有监督的PLS-DA分析,可以看出PLS-DA(

Figure 4 Permutation test in various groups of HEI-OC1 cells treated with 20 mmol/L sodium salicylate for different time
R2 represents the proportion of data variance or variation that the current model can explain, which is the interpretation rate;Q2 represents the proportion of the current model that can predict the variance of the data, which is the prediction rate

Figure 5 Orthogonal partial least squares discriminant analysis(OPLS-DA) score plots and variable importance in the protection(VIP) value plots of HEI-OC1 cells treated with 20 mmol/L sodium salicylate for different time
A: OPLS-DA of control group compared with 24 h group; B: OPLS-DA of 24 h group compared with WD-24 h group; C: VIP value plots of control group compared with 24 h group; D: VIP value plots of 24 h group compared with WD-24 h group (24 h: Administration for 24 h; WD-24 h: Withdrawal for 24 h)
将筛选出的18个差异代谢物导入MetaboAnalyst网站进行代谢通路分析,以impact > 0.1,P < 0.01为条件得出相关性较强的2条代谢通路包括丙氨酸、天冬氨酸、谷氨酸代谢以及嘧啶代谢。其中影响较显著的是嘧啶代谢,影响值更大的是丙氨酸、天冬氨酸、谷氨酸代谢(见

Figure 6 Pathway analysis results of HEI-OC1 toxicity caused by sodium salicylate
本研究发现浓度大于10 mmol/L的水杨酸钠抑制了HEI-OC1细胞的增殖活力,改变了细胞形态,使其长度增加。水杨酸钠给药使HEI-OC1细胞中18个内源性代谢物发生显著变化,其涉及的代谢通路包括丙氨酸、天冬氨酸、谷氨酸代谢以及嘧啶代谢。
差异代谢物乳清酸、尿苷等参与嘧啶代谢。尿苷是核糖核酸合成所必需的嘧啶核苷酸,可以在哺乳动物体内从头合成。尿苷被广泛用于降低细胞毒
差异代谢物谷氨酰胺、N-乙酰丙酮酰谷氨酸(NAAG)等参与丙氨酸、天冬氨酸、谷氨酸代谢。谷氨酸是耳蜗内主要的兴奋性神经递质,水杨酸钠给药后过量的谷氨酰胺可能会在耳蜗谷氨酸-谷氨酰胺循环作用生成谷氨酸,从而引起耳蜗的兴奋性毒
综上所述,通过差异代谢物以及代谢通路生物学意义分析,推测水杨酸钠对HEI-OC1细胞的毒性作用主要是通过影响丙氨酸、天冬氨酸、谷氨酸代谢以及嘧啶代谢等通路而产生作用,本研究进一步阐明了水杨酸钠的耳毒性机制,为耳鸣的发生发展以及治疗提供了参考。
References
Langguth B. A review of tinnitus symptoms beyond 'ringing in the ears':a call to action[J]. Curr Med Res Opin,2011,27(8):1635-1643. [百度学术]
Bhatt JM,Lin HW,Bhattacharyya N. Prevalence,severity,exposures,and treatment patterns of tinnitus in the United States[J]. JAMA Otolaryngol Head Neck Surg,2016,142(10):959-965. [百度学术]
Galazyuk A,Brozoski TJ. Animal models of tinnitus:a review[J]. Otolaryngol Clin North Am,2020,53(4):469-480. [百度学术]
Li SH,Han DY,Yang WY,et al. Research progress on the ototoxicity mechanism of sodium salicylate[J]. J Audiol Speech Pathol(听力学及言语疾病杂志),2001,9(3):174-176. [百度学术]
Steffens DC,Wei Jiang,Krishnan KR,et al. Metabolomic differences in heart failure patients with and without major depression[J]. J Geriatr Psychiatry Neurol,2010,23(2):138-146. [百度学术]
Li WW,Yang Y,Wang SC,et al. Research progress of cellular metabolomics[J]. J Nanjing Univ Tradit Chin Med(南京中医药大学学报),2017,33(2):187-192. [百度学术]
Lu Z,Li S,Sun R,et al. Hirsutella sinensis treatment shows protective effects on renal injury and metabolic modulation in db/db mice[J]. Evid Based Complement Alternat Med,2019,2019:4732858. [百度学术]
Wang W,Cai Q,Zhou F,et al. Impaired pentose phosphate pathway in the development of 3D MCF-7 cells mediated intracellular redox disturbance and multi-cellular resistance without drug induction[J]. Redox Biol,2018,15:253-265. [百度学术]
McEvilly M,Popelas C,Tremmel B. Use of uridine triacetate for the management of fluorouracil overdose[J]. Am J Health Syst Pharm,2011,68(19):1806-1809. [百度学术]
Gallai V,Mazzotta G,Montesi S,et al. Effects of uridine in the treatment of diabetic neuropathy:an electrophysiological study[J]. Acta Neurol Scand,1992,86(1):3-7. [百度学术]
Mironova GD,Khrenov MO,Talanov EY,et al. The role of mitochondrial KATP channel in anti-inflammatory effects of uridine in endotoxemic mice[J]. Arch Biochem Biophys,2018,654:70-76. [百度学术]
Le TT,Ziemba A,Urasaki Y,et al. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation[J]. J Lipid Res,2013,54(4):1044-1057. [百度学术]
Sun Q. Glutamate excitotoxicity and the effect of glutamate-glutamine cycle in the cochlea (耳蜗谷氨酸兴奋性毒性及谷氨酸—谷氨酰胺循环机制的研究)[D]. Beijing:PLA Postgraduate Medical School,2004. [百度学术]
Fuhrman S,Palkovits M,Cassidy M,et al. The regional distribution of N-acetylaspartylglutamate (NAAG) and peptidase activity against NAAG in the rat nervous system[J]. J Neurochem,1994,62(1):275-281. [百度学术]
Zhao J,Ramadan E,Cappiello M,et al. NAAG inhibits KCl-induced
Sanabria ER,Wozniak KM,Slusher BS,et al. GCP II (NAALADase) inhibition suppresses mossy fiber-CA3 synaptic neurotransmission by a presynaptic mechanism[J]. J Neurophysiol,2004,91(1):182-193. [百度学术]
Romei C,Raiteri M,Raiteri L. Glycine release is regulated by metabotropic glutamate receptors sensitive to mGluR2/3 ligands and activated by N-acetylaspartylglutamate (NAAG)[J]. Neuropharmacology,2013,66:311-316. [百度学术]
Fulop T,Radabaugh S,Smith C. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells[J]. J Neurosci,2005,25(32):7324-7332. [百度学术]