使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

单-ADP核糖转移酶家族及其抑制剂在肿瘤治疗中的研究进展

  • 李茵
  • 古宏峰
  • 邹毅
  • 王淑平
  • 徐云根
中国药科大学药物化学系,南京 211198

中图分类号: R914.2R979.1

最近更新:2021-12-28

DOI:10.11665/j.issn.1000-5048.20210601

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

多聚腺苷二磷酸核糖聚合酶(PARPs)在DNA修复与细胞凋亡中发挥着重要的作用。该酶家族中有一类PARPs通过催化和转移单个ADP-核糖来调控各种细胞反应,被称为单-ADP核糖转移酶(MARTs)。大部分MARTs在肿瘤中过度表达,与肿瘤的发生发展密切相关。本文重点介绍了在肿瘤中过度表达的MARTs,以其结构域的差异进行分类,对其现有的作用机制、与肿瘤的密切关系、在肿瘤治疗中的潜在价值以及相应抑制剂的研究进展进行综述。这些靶点有望为精准医疗时代的肿瘤治疗提供新的研究思路。

在真核生物中,多聚腺苷二磷酸核糖聚合酶(PARPs)以烟酰胺腺嘌呤二核苷酸(NAD+)为底物,将单个或直链、分支链的ADP-核糖转移到自身或其他靶蛋白上,从而调控各种细胞反应。所有的PARPs共享保守的C端催化域,N端基序的差异决定了他们各自独特的生物学功能(图1

1-2。迄今已有17个PARPs成员被报道,其中16个具有PARPs催化活性。根据催化功能的不同,PARPs分为多聚-PARPs(PARP1、PARP2、PARP5a、PARP5b),单-ADP核糖转移酶(MARTs)(PARP3、PARP4、PARP6-PARP12、PARP14-PARP163-4,以及无催化活性的PARP(PARP1325。其中,MARTs在细胞增殖、代谢与凋亡、细胞周期调节、蛋白降解、病毒抑制、免疫应答及肿瘤抑制中均发挥着重要作6。根据MARTs结构域的差异,又可将MARTs分为DNA依赖型MARTs(PARP3),含有CCCH锌指结构域的MARTs(PARP7、PARP12),含有Macro结构域的MARTs(PARP9、PARP14、PARP15)及其他类型的MARTs(PARP4、PARP6、PARP8、PARP10、PAPR11、PARP1657

Figure 1 Domains and classification of PARPs family members

CCCH: CCCH domain in PARPs protein; F1, F2, F3, NLS, BRCT, WGR, HPS, SAM, H, Y, E, NES, ZnF, WWE, RRM, Macro, VIT, VWFA, MVP-BD, Myc: they are all regulatory motifs with specific functions in PARPs protein

与PARP1/2类似,多数MARTs是肿瘤治疗的潜在靶点。尽管MARTs的研究尚处于初步阶段,一些PARP(如PARP8)的生理功能未被揭

8,但现有的研究表明,MARTs的表达确实与肿瘤进程密切相关,尤其是PARP7、PARP9、PARP10、PARP14等。经过分析肿瘤基因组图谱(TCGA)中33种肿瘤的MARTs表达情况,发现在不同肿瘤中MARTs表达水平不同,且MARTs过度表达可能与肿瘤进程相关(图2)。首先,MARTs在多种肿瘤中过度表达,例如PARP14在胰腺癌(PAAD)、胃腺癌(STAD)、多形性胶质母细胞瘤(GBM)等肿瘤细胞中过度表达,它与这些肿瘤发展相关,是这些肿瘤的潜在治疗靶点。其次,相同肿瘤中存在多种MARTs过度表达。例如,PARP4、PARP7、PARP9、PARP10、PARP12与PARP14均在PAAD中过度表达,它们有望成为这一难治愈肿瘤的潜在治疗靶点,抑制这些MARTs表达可以抑制肿瘤进展。因此,阐明这些MARTs与肿瘤的关系及其抑制剂的开发至关重要。本文将根据MARTs的结构分类聚焦肿瘤中过表达的MARTs,对其在肿瘤中的价值及抑制剂的研究进展进行综述。

Figure 2 Expression of MARTs family in different cancer tissues

A: Distribution of PARP1, PARP2 and MARTs expression in different cancer tissues; B: Distribution of MARTs in different cancers; C: Distribution of overexpression MARTs in cancers; D: Distribution of cancers with MARTs overexpression.Over expression represents the expression of MARTs in cancer tissue is higher than in para-cancerous tissue and the difference is statistically significant.Low expression represents the expression of MARTs in cancer tissue is lower than in para-cancerous tissue and the difference is statistically significantACC: Adrenocortical carcinoma; BLCA: Bladder urothelial carcinoma; BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and neck squamous cell carcinoma; KIRC: Kidney renal clear cell carcinoma; LAML: Acute myeloid leukemia; LUSC: Lung squamous cell carcinoma; LUAD: Lung adenocarcinoma; LGG: Brain lower grade glioma; OV: Ovarian serous cystadenocarcinoma;PRAD: Prostate adenocarcinoma;PAAD: Pancreatic adenocarcinoma;READ: Rectum adenocarcinoma;SKCM: Skin cutaneous melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular germ cell tumors; THCA: Thyroid carcinoma; THYM: Thymoma; LUSC: Lung squamous cell carcinoma; UCEC: Uterine corpus endometrial carcinoma; UCS: Uterine carcinosarcoma

1 DNA依赖型MARTs

DNA依赖型MARTs是一类能够识别并结合损伤的DNA来发挥催化作用的MARTs,属于这一类的MARTs是PARP3。PARP3在DNA损伤反应、DNA代谢、染色质构建及细胞有丝分裂中发挥作用,并被证明可作为治疗放疗耐药性肿瘤的潜在增敏靶

9-11。研究表明,沉默PARP3基因或中断其与叉头盒蛋白M1(FOXM1)的相互作用会抑制FOXM1下游靶点Rad51,降低细胞的转录水平,增强原发性胶质母细胞瘤对放疗的敏感12。Beck13证明了敲除PARP3会加剧中心体扩增与基因组不稳定性,选择性地抑制乳腺癌基因BRCA1缺陷的三阴性乳腺癌(TNBC)细胞的发生与发展。PARP3的缺失可减弱雷帕霉素机制性靶标复合物2(mTORC2)介导的Akt激酶在Ser473的磷酸化,减弱转化生长因子β(TGFβ)依赖的mTORC2/RICTOR通路的激活,增加RICTOR蛋白的泛素化水平,从而抑制乳腺癌细胞中ROS激酶诱导的上皮间质转化(EMT)、迁移和干细胞形14

PARP3是治疗多种肿瘤的潜在靶点,但目前尚无选择性的PARP3抑制剂被报道。化合物1(olaparib)和2(rucaparib)(图3)最初被鉴定为PARP1/PARP2抑制剂,在乳腺癌、宫颈癌、卵巢癌、膀胱癌、胰腺癌等恶性肿瘤中发挥疗效,研究表明它们对PARP3也有一定抑制活

15-19。有报道称,联合使用PARP3抑制剂与DNA损伤剂、细胞周期检查点抑制剂可对肿瘤细胞产生明显的协同杀伤作用,这为PARP3联合用药提供了理论基20

Figure 3 Olaparib, Rucaparib and PARP7, PARP10, PARP15 inhibitors

2 CCCH型MARTs

CCCH型MARTs是一类结构中含有3个半胱氨酸和1个组氨酸(CCCH)型锌指结构域的MARTs,这类MARTs包括PARP7和PARP12。CCCH结构域能识别并结合RNA,在抗病毒感染、免疫与炎症反应、肿瘤抑制中发挥着重要的作

21-25

2.1 PARP7

PARP7又名ARTD14或TIPARP,其通过负向调控致癌转录因子参与肿瘤抑制过程。它以ADP核糖化依赖的方式形成不同的核体,核体激活E3泛素连接酶HUWE1和HIF-1α,通过加速HIF-1α的泛素化和降解来抑制乳腺癌与结肠癌移植瘤模型中的肿瘤发生与Warburg效

26。目前只有一款口服特异性的PARP7抑制剂3(RBN2397)(图3)处于临床Ⅰ期。该化合物对PARP7的抑制活性IC50为3 nmol/L,相对于其他PARPs有50倍以上选择27。临床前试验表明,RBN2397通过恢复干扰素信号通路抑制肿瘤免疫逃逸,进而抑制肿瘤生28,它对实体瘤、胰腺癌、卵巢癌和非小细胞肺癌均有效。由于PARP7与肿瘤密切相关,开发其抑制剂具有重要意义。

2.2 PARP12

PARP12又名ARTD12,其在抗病毒感染、先天性免疫反应、炎症反应及诱导细胞自噬中发挥着重要的作用。目前有关PARP12在肿瘤治疗中的报道较少,但已有研究表明,PARP12缺陷通过提高其功能合作蛋白FHL2的泛素化来降低FHL2的蛋白水平,进而负反馈调节降低TGF-β1的表达水平来促进EMT过程,促进肝癌细胞(HCC)在体内外的侵袭和迁

29

3 Macro型MARTs

Macro型MARTs是一类结构中含有macro结构域的MARTs。这类MARTs在功能上与DNA修复、染色质重塑、转录调控等生物活动相关,其家族成员包括PARP9、PARP14和PARP15

30

3.1 PARP9

PARP9又名为ARTD9或BAL1,它含有两个保守的Macro结构

31-32。最初人们发现PARP9在弥漫性大B细胞淋巴瘤(DLBCLs)中过度表达,其作为转录共激活因子,被证明与干扰素基因(ISGs)的表达及细胞免疫的调节相33-35。在DLBCLs中,过表达PARP9可抑制IFNγ-STAT1-IRF1-p53轴,进而降低ISGs表达,阻断细胞凋亡,最终促进B细胞淋巴瘤的发31。随后的研究表明,PARP9与前列腺癌的发生发展、侵袭转移密切相关。其可与DTX3L(一种参与DNA损伤修复的组蛋白E3连接酶)及PARP14形成复合物促进转移性mPCa细胞的存活与增436。PARP9在43.8%的人乳腺癌病例中过度表达,敲除PARP9基因可以抑制乳腺癌细胞的迁37。此外,PARP9的表达也与胶质瘤的发生发展密切相关。联合PARP9抑制剂与免疫检查点分子来治疗胶质瘤被证明具有潜在的价38。目前尚无PARP9抑制剂被报道,但其过表达与多种肿瘤细胞的相关性提示PARP9在肿瘤治疗中的潜在价值。

3.2 PARP14

PARP14,又名为ARTD8/BAL2/CoaST6,是由1 801个氨基酸组成的Macro型MART。其过表达或突变会导致Macro结构域功能失调,最终促使肿瘤等疾病发

39。PARP14与多种恶性肿瘤的发展密切相关,包括多发性骨髓瘤(MM)、肝癌、B细胞淋巴瘤、乳腺癌、前列腺癌、胃癌40-41。其中,PARP14在80%以上的MM细胞系中过表达。PARP14作为JNK2依赖的一个新生下游效应基因,通过结合并抑制JNK1激酶的活性促进MM细胞存活 4042。PARP14可以提高肝癌细胞内NADPH和谷胱甘肽的水平来提高细胞的抗氧化能力,它通过PARP14-JNK1-PKM2轴使丙酮酸激酶M2(PKM2)维持在低活性状态,促进HCC细胞的有氧糖酵解并调节Warburg效应,在细胞代谢中发挥着重要的作用 43。此外,PARP14在小鼠B-淋巴瘤细胞中呈过表达,它通过增加细胞能量代谢率,促进B细胞生存,进而加速c-MYC基因诱导的B淋巴癌的发4144

Moustakim

45通过高通量筛选5万种化合物得到的先导物4(GeA-69)及同系物5(MnK2-13)(图4),对PARP14具有较好的选择39。这类化合物能在细胞中抑制PARP14转位到DNA损伤位点。共晶结构显示MnK2-13深埋于PARP14的Macro2结构域,不占据ADPR结合位点,不与溶剂相接39。2017年,Upton46报道的化合物6(4t,图4)对PARP14表现出较强的抑制活性,IC50为160 nmol/L,但对PARP1未表现出明显的选择性。同年,Yoneyama47从一个约含50万个小分子的化合物库得到化合物7(图4),其对PARP14的抑制作用,优于PARP1。化合物8(H10,图4)也显示出对PARP14有效的体外抑制活性及良好的选择性(约为PARP1的24倍,TNKS1的18倍48。2020年由Ribon Therapeutics公司开发的化合物9(RBN-012759,图4)对PARP14的抑制活性达到纳摩尔水平,选择性至少是其他PARPs成员的300倍,可作为PARP14的探针研究抗肿瘤免疫反49。其他处于生物活性测试阶段的PARP14抑制剂化合物10 ~ 12如图4所示。因此,PARP14是潜在的肿瘤治疗靶点,开发其抑制剂有望得到治疗肿瘤的新药物。

Figure 4 PARP14 inhibitors

3.3 PARP15

PARP15,也被称为ARTD7或BAL3,其与抗病毒感染及多种肿瘤相

3350。PARP15最初被证实为弥漫性大B细胞淋巴瘤的风险相关基因,其在B细胞淋巴瘤中高表达,并与细胞凋亡相51。研究表明PARP15与肺癌(LUAD)治疗的良好预后相52。此外,染色体内融合形成的融合基因PARP15-AHSG在HCC中具有潜在的治疗价53。PARP15可能是鼻咽癌、舌癌、急性髓系白血病与宫颈癌放疗相关的血液毒性的潜在预测因52。目前针对PARP15的小分子抑制剂报道较少。化合物13(A101-(ConH2)-B322,图3)对PARP15抑制的选择性是其他测试PARPs的5051

4 其他MARTs

4.1 PARP4

PARP4又名ARTD4或VPARP,是具有催化活性的vault蛋白的组成成

54。其被证明参与调节人类细胞的端粒酶活54、对抗病毒感3355、DNA损伤修复及诱导癌基因表56-57。有报道显示PARP4与DNA损伤和修复通路相关,在结直肠神经内分泌肿瘤(NETs)中会发生突58。PARP4是原发性甲状腺癌、乳腺癌、胰腺癌等多种肿瘤的易感基因,降低其表达能够抑制肿瘤生5659。此外,PARP4参与细胞转运,与一些肿瘤细胞的耐药性相55。目前尚没有PARP4抑制剂被报道。

4.2 PARP10

PARP10又名ARTD10,在调节DNA损伤修复、细胞代谢、细胞凋亡及多种肿瘤中发挥作

60-61。PARP10最初被鉴定为MYC相互作用蛋白,在大多数人类肿瘤中过度表达。它可减轻细胞对复制应激的敏感性,促进停滞的复制叉重新启动以推动肿瘤发62。研究表明PARP10参与延缓HCC进展。PARP10在T601位点的磷酸化显著降低了其与NEMO蛋白的结合,破坏了PARP10对NEMO泛素化的抑制作用,从而增强NF-κB对多个靶基因的转录活性,促进HCC的发63。此外,PARP10也被证实能促进结直肠癌细胞增64

由于PARP10与肿瘤的发生发展密切相关,其抑制剂的开发受到了广泛关注,目前已有几个PARP10抑制剂被报

65。化合物14(OUL35,图3)对PARP10的IC50远高于其他PARPs。在对接模型中,OUL35与Gly888的酰胺和羰基以及Ser927的侧链羟基形成氢66。保留OUL35母核,经过结构改造得到化合物15(图3),其活性优于OUL35,并显示出类似的选择67。进一步结构改造所得的化合物16(图3)对PARP10(IC50 = 0.40 μmol/L)的抑制活性优于PARP14(IC50 = 5.2 μmol/L)和PARP1(IC50 > 100 μmol/L61。2019年,基于3,4-二氢异喹啉骨架设计的化合物17(图3)对PARP10也表现出一定的抑制活性及优良的选择68。因此,PARP10是肿瘤治疗的重要靶点,开发其抑制剂具有重要意义。

4.3 具有独特的生物学功能的MARTs

除了调节肿瘤进程,一些MARTs具有其独特的生理学调节功能。PARP6又称ARTD17,它由630个氨基酸组成,在细胞中主要参与调节细胞周期与脂质代谢,与中心体聚集的抑制过程相

69-70;PARP11又名ARTD11,其结构中存在一个球状的WWE结构域。与PARP12类似,PARP11在对抗病毒感染方面发挥作71-72;PARP16又名ARTD15,它是一种尾部锚定在内质网的跨膜蛋白,主要参与调节内质网应激与血管生成,在细胞衰老与凋亡中发挥作73-74。TCGA数据显示,这些MARTs的表达与肿瘤的发生、侵袭、转移相关,但它们与肿瘤的关系需要进一步研究确证。

5 总结与展望

PARPs家族在体内通过翻译后修饰参与多种生物学功能。过去的几十年中,PARP1和PARP2已经得到了广泛的研究,而MARTs的相关研究还处于起步阶段。然而,很多文献表明,MARTs与肿瘤密切相关并且参与调控这些肿瘤的进展。例如PARP7在GBM、PAAD等肿瘤中过表达,其抑制剂RBN2397处于Ⅰ期临床试验,已被证实可以治疗实体瘤、胰腺癌、卵巢癌和非小细胞肺癌。PARP7作为肿瘤躲避免疫系统的关键分子,其抑制剂有望应用于肿瘤治疗。PARP10在DLBC、急性髓系白血病(LAML)、THYM以及GBM、PAAD等一些难以治疗的肿瘤中过度表达,与这些肿瘤的发生发展密切相关。目前已有一些PARP10抑制剂被报道,说明开发PARP10抑制剂在肿瘤治疗中具有重大意义。类似的具有较大开发潜力的靶点还有PARP14、PARP15等。

MARTs在抗肿瘤方面表现出巨大的潜力。如何根据PARP蛋白之间的差异设计高选择性、强效的小分子抑制剂,系统并且全面地研究PARP蛋白家族的相关功能与作用机制,是研究人员面临的巨大挑战。文中所提到的小分子化合物对研究MARTs蛋白及其抑制剂具有重要的价值,它们不仅有望成为新的肿瘤治疗药物,还可以作为探针进一步探索MARTs的生物学功能。总之,以MARTs蛋白及其抑制剂为背景的药物开发有望为精准医疗时代的肿瘤治疗带来新的希望。

References

1

Qin WWu HCao Let al. Research progress on PARP14 as a drug target[J]. Front Pharmacol201910172184. [百度学术

2

Wigle TJChurch WDMajer CRet al. Forced self-modification assays as a strategy to screen monoPARP enzymes[J]. SLAS Discov2020253):241-252. [百度学术

3

Hottiger MOHassa POLüscher Bet al. Toward a unified nomenclature for mammalian ADP-ribosyltransferases[J]. Trends Biochem Sci2010354):208-219. [百度学术

4

Carter ISchmaedick AVJin Het al. Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly (ADP-ribose) polymerase 14 (PARP14)[J]. ACS Chem Biol20181310):2841-2848. [百度学术

5

Vyas SChesarone MTodorova Tet al. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology[J]. Nat Commun201341):2240-2253. [百度学术

6

Z.Lu AAbo RRen Yet al. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation[J]. Biochem Pharmacol201916797-106. [百度学术

7

Gibson BAKraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs[J]. Nat Rev Mol Cell Biol2012137):411-424. [百度学术

8

Bindesboll CTan SBott Det al. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors[J]. Biochem J20164737):899-910. [百度学术

9

Grundy GJPolo LMZeng ZHet al. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B (Glu2)[J]. Nat Commun2016712404-12416. [百度学术

10

Rulten SLFisher ARobert Iet al. PARP-3 and APLF function together to accelerate nonhomologous end-joining[J]. Mol Cell2011411):33-45. [百度学术

11

Augustin ASpenlehauer CDumond Het al. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression[J]. J Cell Sci20031168):1551-1562. [百度学术

12

Quan JJSong JNQu JQ. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance[J]. Tumor Biol20153611):8617-8625. [百度学术

13

Beck CRodriguez-Vargas JMBoehler Cet al. PARP3,a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers[J]. Cell Death Differ2019265):1615-1630. [百度学术

14

Rodriguez-Vargas JMNguekeu-Zebaze LDantzer F. PARP3 comes to light as a prime target in cancer therapy[J]. Cell Cycle20191812):1295-1301. [百度学术

15

Deeks ED. Olaparib:first global approval[J]. Drugs2015752):231-240. [百度学术

16

Musella ABardhi EMarchetti Cet al. Rucaparib:an emerging parp inhibitor for treatment of recurrent ovarian cancer[J]. Cancer Treat Rev2018667-14. [百度学术

17

Sharif ABAmrein LAloyz Ret al. PARP3 inhibitors ME0328 and olaparib potentiate vinorelbine sensitization in breast cancer cell lines[J]. Breast Cancer Res Treat201817212):23-32. [百度学术

18

Mclachlan JBanerjee S. Olaparib for the treatment of epithelial ovarian cancer[J]. Expert Opin Pharmacother2016177):995-1003. [百度学术

19

Shi JYBai YPeng KWet al. Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J]. J China Pharm Univ (中国药科大学学报)2019505):523-530. [百度学术

20

Slade D. Mitotic functions of poly (ADP-ribose) polymerases[J]. Biochem Pharmacol201916733-43. [百度学术

21

Kozaki TKomano JKanbayashi Det al. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response[J]. Proc Natl Acad Sci201711410):2681-2686. [百度学术

22

MacPherson LTamblyn LRajendra Set al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly (ADP-ribose) polymerase (TiPARP,ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation[J]. Nucleic Acids Res2013413):1604-1621. [百度学术

23

Gomez ABindesbøll CSatheesh SVet al. Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity[J]. Biochem J201847523):3827-3846. [百度学术

24

Yamada THorimoto HKameyama Tet al. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon—mediated antiviral innate defense[J]. Nat Immunol2016176):687-694. [百度学术

25

Grimaldi GRajendra SMatthews J. The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA,TIPARP-AS1[J]. Biochem Biophys Res Commun20184953):2356-2362. [百度学术

26

Zhang LCao JDong Let al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J]. Proc Natl Acad Sci202011724):13447-13456. [百度学术

27

Vasbinder MMGozgit JMbo RPet al. Abstract DDT02-01:RBN-2397:a first-in-class PARP7 inhibitor targeting a newly discovered cancer vulnerability in stress-signaling pathways[J]. Cancer Res20208016). DOI:10.1158/1538-7445.AM2020-DDT02-01. [百度学术

28

RBN-2397an oral PARP7 inhibitor,in patients with solid tumors,FIH,MAD study[J].Case Med Res2019.DOI:10.31525/ct/-nct04053673. [百度学术

29

Shao CJQiu YYLiu Jet al. PARP12 (ARTD12) suppresses hepatocellular carcinoma metastasis through interacting with FHL2 and regulating its stability[J]. Cell Death Dis201899):856-870. [百度学术

30

Lee MKCheong HSKoh Yet al. Genetic association of PARP15 polymorphisms with clinical outcome of acute myeloid leukemia in a Korean population[J]. Genet Test Mol Biomarkers20162011):696-701. [百度学术

31

Camicia RBachmann SBWinkler HCet al. BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma[J]. J Cell Sci20131269):1969-1980. [百度学术

32

Aguiar RTakeyama KHe Cet al. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly (ADP-ribose) polymerase activity[J]. J Biol Chem200528040):33756-33765. [百度学术

33

Daugherty MDYoung JMKerns JAet al. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts[J]. PLoS Genet2014105):e1004403. [百度学术

34

Iwata HGoettsch CSharma Aet al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation[J]. Nat Commun2016712849. [百度学术

35

Caprara GProsperini EPiccolo Vet al. PARP14 controls the nuclear accumulation of a subset of type I IFN-inducible proteins[J]. J Immunol20182007):2439-2454. [百度学术

36

Yang CSJividen KSpencer Aet al. Ubiquitin modification by the E3 ligase/ADP- ribosyltransferase Dtx3L/PARP9[J]. Mol Cell2017664):503-516. [百度学术

37

Tang XZhang HLong Yet al. PARP9 is overexpressed in human breast cancer and promotes cancer cell migration[J]. Oncol Lett2018163):1215-1227. [百度学术

38

Xu HChai SSWang YHet al. Molecular and clinical characterization of PARP9 in gliomas:a potential immunotherapeutic target[J]. CNS Neurosci Ther2020268):804-814. [百度学术

39

Schuller MRiedel KGibbs-Seymour Iet al. Discovery of a selective allosteric inhibitor targeting macrodomain 2 of poly-adenosine-diphosphate-ribose polymerases 14[J]. ACS Chem Biol20171211):2866-2874. [百度学术

40

Yao NChen QYShi WHet al. PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway[J]. Mol Carcinog2019587):1291-1302. [百度学术

41

Camicia RWinkler HCHassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma:a comprehensive review[J]. Mol Cancer201514207. [百度学术

42

Barbarulo AIansante VChaidos Aet al. Poly (ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma[J]. Oncogene20123236):4231-4242. [百度学术

43

Iansante VChoy PMFung SWet al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation[J]. Nat Commun201567882-7897. [百度学术

44

Cho SHAhn AKBhargava Pet al. Glycolytic rate and lymphomagenesis depend on PARP14,an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family[J]. Proc Natl Acad Sci201110838):15972-15977. [百度学术

45

Moustakim MRiedel KSchuller Met al. Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2[J]. Bioorg Med Chem20182611):2965-2972. [百度学术

46

Upton KMeyers MThorsell AGet al. Design and synthesis of potent inhibitors of the mono(ADP-ribosyl) transferase,PARP14[J]. Bioorg Med Chem Lett20172713):2907-2911. [百度学术

47

Yoneyama MMatsumoto SToyoda Yet al. Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation[J]. Biochem Biophys Res Commun20174863):626-631. [百度学术

48

He FHTsuda KTakahashi Met al. Structural insight into the interaction of ADP-ribose with the PARP WWE domains[J]. FEBS Lett201258621):3858-3864. [百度学术

49

Schenkel LMolina JSwinger Ket al. Abstract 1038:a potent and selective PARP14 inhibitor decreases pro-tumor macrophage function and elicits inflammatory responses in tumor explants[C]. //Tumor Biology.American Association for Cancer Research2020Philadelphia,PA,2020. [百度学术

50

Eckei LKrieg SBütepage Met al. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases[J]. Sci Rep2017741746-41764. [百度学术

51

Yuen LHDana SLiu Yet al. A focused DNA-encoded chemical library for the discovery of inhibitors of NAD+-dependent enzymes[J]. J Am Chem Soc201914113):5169-5181. [百度学术

52

Han LShi HLuo Yet al. Gene signature based on B cell predicts clinical outcome of radiotherapy and immunotherapy for patients with lung adenocarcinoma[J]. Cancer Med2020924):9581-9594. [百度学术

53

Lin LWang DCao Net al. Whole-transcriptome analysis of hepatocellular carcinoma[J]. Med Oncol2013304):736-747. [百度学术

54

Liu YSnow BEKickhoefer VAet al. Vault poly (ADP-Ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo[J]. Mol Cell Biol20042412):5314-5323. [百度学术

55

Amé JCSpenlehauer CMurcia GD. The PARP superfamily[J]. BioEssays2004268):882-893. [百度学术

56

Ikeda YKiyotani KYew PYet al. Germline PARP4 mutations in patients with primary thyroid and breast cancers[J]. Endocr Relat Cancer2016233):171-179. [百度学术

57

Kickhoefer VASiva ACKedersha NLet al. The 193-Kd vault protein,VPARP,is a novel poly (ADP-ribose) polymerase[J]. J Cell Biol19991465):917-928. [百度学术

58

Wang TTLu JXu Let al. Whole genome sequencing of colorectal neuroendocrine tumors and in-depth mutational analyses[J]. Med Oncol2020376):56-72. [百度学术

59

Prawira AMunusamy PYuan Jet al. Assessment of PARP4 as a candidate breast cancer susceptibility gene[J]. Breast Cancer Res Treat201917723):145-153. [百度学术

60

Kaufmann MFeijs KLüscher B. Function and regulation of the mono-ADP-ribosyltransferase ARTD10[J]. Curr Top Microbiol Immunol2015384167-188. [百度学术

61

Holechek JLease RThorsell AGet al. Design,synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl) transferases PARP10 and PARP14[J]. Bioorg Med Chem Lett20182811):2050-2054. [百度学术

62

Schleicher EMGalvan AMImamura KYet al. PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress[J]. Nucleic Acids Res20184617):8908-8916. [百度学术

63

Tian LYao KLiu Ket al. PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression[J]. Oncogene20203912):3145-3162. [百度学术

64

Wu CFXiao MWang YLet al. PARP10 influences the proliferation of colorectal carcinoma cells,a preliminary study[J]. Mol Biol2020542):220-228. [百度学术

65

Nicolae CMAho ERVlahos Aet al. The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance[J]. J Biol Chem201428919):13627-13637. [百度学术

66

Venkannagari HVerheugd PKoivunen Jet al. Small-molecule chemical probe rescues cells from mono-ADP-ribosyltransferase ARTD10/PARP10-induced apoptosis and sensitizes cancer cells to DNA damage[J]. Cell Chem Biol20162310):1251-1260. [百度学术

67

Murthy SDesantis JVerheugd Pet al. 4-(Phenoxy) and 4-(benzyloxy) benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10[J]. Eur J Med Chem201815693-102. [百度学术

68

Morgan RKKirby ITSchmaedick AVet al. Rational design of cell-active inhibitors of PARP10[J]. ACS Med Chem Lett2019101):74-79. [百度学术

69

Qi GKudo YTang Bet al. PARP6 acts as a tumor suppressor via downregulating survivin expression in colorectal cancer[J]. Oncotarget2016714):18812-18824. [百度学术

70

Wang HLi SLuo Xet al. Knockdown of PARP6 or survivin promotes cell apoptosis and inhibits cell invasion of colorectal adenocarcinoma cells[J]. Oncol Rep2017374):2245-2251. [百度学术

71

Atasheva SAkhrymuk MFrolova EIet al. New PARP gene with an anti-alphavirus function[J]. J Virol20128615):8147-8160. [百度学术

72

Kirby ITKojic AArnold MRet al. A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity[J]. Cell Chem Biol20182512):1547-1553. [百度学术

73

Jwa MChang P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response[J]. Nat Cell Biol20121411):1223-1230. [百度学术

74

Wang JZhu CSong Det al. Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity[J]. Cell Death Discov2017317034-17043. [百度学术