摘要
多聚腺苷二磷酸核糖聚合酶(PARPs)在DNA修复与细胞凋亡中发挥着重要的作用。该酶家族中有一类PARPs通过催化和转移单个ADP-核糖来调控各种细胞反应,被称为单-ADP核糖转移酶(MARTs)。大部分MARTs在肿瘤中过度表达,与肿瘤的发生发展密切相关。本文重点介绍了在肿瘤中过度表达的MARTs,以其结构域的差异进行分类,对其现有的作用机制、与肿瘤的密切关系、在肿瘤治疗中的潜在价值以及相应抑制剂的研究进展进行综述。这些靶点有望为精准医疗时代的肿瘤治疗提供新的研究思路。
在真核生物中,多聚腺苷二磷酸核糖聚合酶(PARPs)以烟酰胺腺嘌呤二核苷酸(NA

Figure 1 Domains and classification of PARPs family members
CCCH: CCCH domain in PARPs protein; F1, F2, F3, NLS, BRCT, WGR, HPS, SAM, H, Y, E, NES, ZnF, WWE, RRM, Macro, VIT, VWFA, MVP-BD, Myc: they are all regulatory motifs with specific functions in PARPs protein
与PARP1/2类似,多数MARTs是肿瘤治疗的潜在靶点。尽管MARTs的研究尚处于初步阶段,一些PARP(如PARP8)的生理功能未被揭

Figure 2 Expression of MARTs family in different cancer tissues
A: Distribution of PARP1, PARP2 and MARTs expression in different cancer tissues; B: Distribution of MARTs in different cancers; C: Distribution of overexpression MARTs in cancers; D: Distribution of cancers with MARTs overexpression.Over expression represents the expression of MARTs in cancer tissue is higher than in para-cancerous tissue and the difference is statistically significant.Low expression represents the expression of MARTs in cancer tissue is lower than in para-cancerous tissue and the difference is statistically significantACC: Adrenocortical carcinoma; BLCA: Bladder urothelial carcinoma; BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and neck squamous cell carcinoma; KIRC: Kidney renal clear cell carcinoma; LAML: Acute myeloid leukemia; LUSC: Lung squamous cell carcinoma; LUAD: Lung adenocarcinoma; LGG: Brain lower grade glioma; OV: Ovarian serous cystadenocarcinoma;PRAD: Prostate adenocarcinoma;PAAD: Pancreatic adenocarcinoma;READ: Rectum adenocarcinoma;SKCM: Skin cutaneous melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular germ cell tumors; THCA: Thyroid carcinoma; THYM: Thymoma; LUSC: Lung squamous cell carcinoma; UCEC: Uterine corpus endometrial carcinoma; UCS: Uterine carcinosarcoma
DNA依赖型MARTs是一类能够识别并结合损伤的DNA来发挥催化作用的MARTs,属于这一类的MARTs是PARP3。PARP3在DNA损伤反应、DNA代谢、染色质构建及细胞有丝分裂中发挥作用,并被证明可作为治疗放疗耐药性肿瘤的潜在增敏靶
PARP3是治疗多种肿瘤的潜在靶点,但目前尚无选择性的PARP3抑制剂被报道。化合物1(olaparib)和2(rucaparib)(

Figure 3 Olaparib, Rucaparib and PARP7, PARP10, PARP15 inhibitors
CCCH型MARTs是一类结构中含有3个半胱氨酸和1个组氨酸(CCCH)型锌指结构域的MARTs,这类MARTs包括PARP7和PARP12。CCCH结构域能识别并结合RNA,在抗病毒感染、免疫与炎症反应、肿瘤抑制中发挥着重要的作
PARP7又名ARTD14或TIPARP,其通过负向调控致癌转录因子参与肿瘤抑制过程。它以ADP核糖化依赖的方式形成不同的核体,核体激活E3泛素连接酶HUWE1和HIF-1α,通过加速HIF-1α的泛素化和降解来抑制乳腺癌与结肠癌移植瘤模型中的肿瘤发生与Warburg效
Macro型MARTs是一类结构中含有macro结构域的MARTs。这类MARTs在功能上与DNA修复、染色质重塑、转录调控等生物活动相关,其家族成员包括PARP9、PARP14和PARP1
PARP9又名为ARTD9或BAL1,它含有两个保守的Macro结构
PARP14,又名为ARTD8/BAL2/CoaST6,是由1 801个氨基酸组成的Macro型MART。其过表达或突变会导致Macro结构域功能失调,最终促使肿瘤等疾病发
Moustakim

Figure 4 PARP14 inhibitors
PARP15,也被称为ARTD7或BAL3,其与抗病毒感染及多种肿瘤相
PARP4又名ARTD4或VPARP,是具有催化活性的vault蛋白的组成成
PARP10又名ARTD10,在调节DNA损伤修复、细胞代谢、细胞凋亡及多种肿瘤中发挥作
由于PARP10与肿瘤的发生发展密切相关,其抑制剂的开发受到了广泛关注,目前已有几个PARP10抑制剂被报
除了调节肿瘤进程,一些MARTs具有其独特的生理学调节功能。PARP6又称ARTD17,它由630个氨基酸组成,在细胞中主要参与调节细胞周期与脂质代谢,与中心体聚集的抑制过程相
PARPs家族在体内通过翻译后修饰参与多种生物学功能。过去的几十年中,PARP1和PARP2已经得到了广泛的研究,而MARTs的相关研究还处于起步阶段。然而,很多文献表明,MARTs与肿瘤密切相关并且参与调控这些肿瘤的进展。例如PARP7在GBM、PAAD等肿瘤中过表达,其抑制剂RBN2397处于Ⅰ期临床试验,已被证实可以治疗实体瘤、胰腺癌、卵巢癌和非小细胞肺癌。PARP7作为肿瘤躲避免疫系统的关键分子,其抑制剂有望应用于肿瘤治疗。PARP10在DLBC、急性髓系白血病(LAML)、THYM以及GBM、PAAD等一些难以治疗的肿瘤中过度表达,与这些肿瘤的发生发展密切相关。目前已有一些PARP10抑制剂被报道,说明开发PARP10抑制剂在肿瘤治疗中具有重大意义。类似的具有较大开发潜力的靶点还有PARP14、PARP15等。
MARTs在抗肿瘤方面表现出巨大的潜力。如何根据PARP蛋白之间的差异设计高选择性、强效的小分子抑制剂,系统并且全面地研究PARP蛋白家族的相关功能与作用机制,是研究人员面临的巨大挑战。文中所提到的小分子化合物对研究MARTs蛋白及其抑制剂具有重要的价值,它们不仅有望成为新的肿瘤治疗药物,还可以作为探针进一步探索MARTs的生物学功能。总之,以MARTs蛋白及其抑制剂为背景的药物开发有望为精准医疗时代的肿瘤治疗带来新的希望。
References
Qin W,Wu H,Cao L,et al. Research progress on PARP14 as a drug target[J]. Front Pharmacol,2019,10:172 –184. [百度学术]
Wigle TJ,Church WD,Majer CR,et al. Forced self-modification assays as a strategy to screen monoPARP enzymes[J]. SLAS Discov,2020,25(3):241-252. [百度学术]
Hottiger MO,Hassa PO,Lüscher B,et al. Toward a unified nomenclature for mammalian ADP-ribosyltransferases[J]. Trends Biochem Sci,2010,35(4):208-219. [百度学术]
Carter I,Schmaedick AV,Jin H,et al. Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly (ADP-ribose) polymerase 14 (PARP14)[J]. ACS Chem Biol,2018,13(10):2841-2848. [百度学术]
Vyas S,Chesarone M,Todorova T,et al. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology[J]. Nat Commun,2013,4(1):2240-2253. [百度学术]
Z.Lu A,Abo R,Ren Y,et al. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation[J]. Biochem Pharmacol,2019,167:97-106. [百度学术]
Gibson BA,Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs[J]. Nat Rev Mol Cell Biol,2012,13(7):411-424. [百度学术]
Bindesboll C,Tan S,Bott D,et al. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors[J]. Biochem J,2016,473(7):899-910. [百度学术]
Grundy GJ,Polo LM,Zeng ZH,et al. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B (Glu2)[J]. Nat Commun,2016,7:12404-12416. [百度学术]
Rulten SL,Fisher A,Robert I,et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining[J]. Mol Cell,2011,41(1):33-45. [百度学术]
Augustin A,Spenlehauer C,Dumond H,et al. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression[J]. J Cell Sci,2003,116(8):1551-1562. [百度学术]
Quan JJ,Song JN,Qu JQ. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance[J]. Tumor Biol,2015,36(11):8617-8625. [百度学术]
Beck C,Rodriguez-Vargas JM,Boehler C,et al. PARP3,a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers[J]. Cell Death Differ,2019,26(5):1615-1630. [百度学术]
Rodriguez-Vargas JM,Nguekeu-Zebaze L,Dantzer F. PARP3 comes to light as a prime target in cancer therapy[J]. Cell Cycle,2019,18(12):1295-1301. [百度学术]
Deeks ED. Olaparib:first global approval[J]. Drugs,2015,75(2):231-240. [百度学术]
Musella A,Bardhi E,Marchetti C,et al. Rucaparib:an emerging parp inhibitor for treatment of recurrent ovarian cancer[J]. Cancer Treat Rev,2018,66:7-14. [百度学术]
Sharif AB,Amrein L,Aloyz R,et al. PARP3 inhibitors ME0328 and olaparib potentiate vinorelbine sensitization in breast cancer cell lines[J]. Breast Cancer Res Treat,2018,172(12):23-32. [百度学术]
Mclachlan J,Banerjee S. Olaparib for the treatment of epithelial ovarian cancer[J]. Expert Opin Pharmacother,2016,17(7):995-1003. [百度学术]
Shi JY,Bai Y,Peng KW,et al. Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J]. J China Pharm Univ (中国药科大学学报),2019,50(5):523-530. [百度学术]
Slade D. Mitotic functions of poly (ADP-ribose) polymerases[J]. Biochem Pharmacol,2019,167:33-43. [百度学术]
Kozaki T,Komano J,Kanbayashi D,et al. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response[J]. Proc Natl Acad Sci,2017,114(10):2681-2686. [百度学术]
MacPherson L,Tamblyn L,Rajendra S,et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly (ADP-ribose) polymerase (TiPARP,ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation[J]. Nucleic Acids Res,2013,41(3):1604-1621. [百度学术]
Gomez A,Bindesbøll C,Satheesh SV,et al. Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity[J]. Biochem J,2018,475(23):3827-3846. [百度学术]
Yamada T,Horimoto H,Kameyama T,et al. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon—mediated antiviral innate defense[J]. Nat Immunol,2016,17(6):687-694. [百度学术]
Grimaldi G,Rajendra S,Matthews J. The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA,TIPARP-AS1[J]. Biochem Biophys Res Commun,2018,495(3):2356-2362. [百度学术]
Zhang L,Cao J,Dong L,et al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J]. Proc Natl Acad Sci,2020,117(24):13447-13456. [百度学术]
Vasbinder MM,Gozgit JM,bo RP,et al. Abstract DDT02-01:RBN-2397:a first-in-class PARP7 inhibitor targeting a newly discovered cancer vulnerability in stress-signaling pathways[J]. Cancer Res,2020,80(16). DOI:10.1158/1538-7445.AM2020-DDT02-01. [百度学术]
RBN-2397,an oral PARP7 inhibitor,in patients with solid tumors,FIH,MAD study[J].Case Med Res,2019.DOI:10.31525/ct/-nct04053673. [百度学术]
Shao CJ,Qiu YY,Liu J,et al. PARP12 (ARTD12) suppresses hepatocellular carcinoma metastasis through interacting with FHL2 and regulating its stability[J]. Cell Death Dis,2018,9(9):856-870. [百度学术]
Lee MK,Cheong HS,Koh Y,et al. Genetic association of PARP15 polymorphisms with clinical outcome of acute myeloid leukemia in a Korean population[J]. Genet Test Mol Biomarkers,2016,20(11):696-701. [百度学术]
Camicia R,Bachmann SB,Winkler HC,et al. BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma[J]. J Cell Sci,2013,126(9):1969-1980. [百度学术]
Aguiar R,Takeyama K,He C,et al. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly (ADP-ribose) polymerase activity[J]. J Biol Chem,2005,280(40):33756-33765. [百度学术]
Daugherty MD,Young JM,Kerns JA,et al. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts[J]. PLoS Genet,2014,10(5):e1004403. [百度学术]
Iwata H,Goettsch C,Sharma A,et al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation[J]. Nat Commun,2016,7:12849. [百度学术]
Caprara G,Prosperini E,Piccolo V,et al. PARP14 controls the nuclear accumulation of a subset of type I IFN-inducible proteins[J]. J Immunol,2018,200(7):2439-2454. [百度学术]
Yang CS,Jividen K,Spencer A,et al. Ubiquitin modification by the E3 ligase/ADP- ribosyltransferase Dtx3L/PARP9[J]. Mol Cell,2017,66(4):503-516. [百度学术]
Tang X,Zhang H,Long Y,et al. PARP9 is overexpressed in human breast cancer and promotes cancer cell migration[J]. Oncol Lett,2018,16(3):1215-1227. [百度学术]
Xu H,Chai SS,Wang YH,et al. Molecular and clinical characterization of PARP9 in gliomas:a potential immunotherapeutic target[J]. CNS Neurosci Ther,2020,26(8):804-814. [百度学术]
Schuller M,Riedel K,Gibbs-Seymour I,et al. Discovery of a selective allosteric inhibitor targeting macrodomain 2 of poly-adenosine-diphosphate-ribose polymerases 14[J]. ACS Chem Biol,2017,12(11):2866-2874. [百度学术]
Yao N,Chen QY,Shi WH,et al. PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway[J]. Mol Carcinog,2019,58(7):1291-1302. [百度学术]
Camicia R,Winkler HC,Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma:a comprehensive review[J]. Mol Cancer,2015,14:207. [百度学术]
Barbarulo A,Iansante V,Chaidos A,et al. Poly (ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma[J]. Oncogene,2012,32(36):4231-4242. [百度学术]
Iansante V,Choy PM,Fung SW,et al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation[J]. Nat Commun,2015,6:7882-7897. [百度学术]
Cho SH,Ahn AK,Bhargava P,et al. Glycolytic rate and lymphomagenesis depend on PARP14,an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family[J]. Proc Natl Acad Sci,2011,108(38):15972-15977. [百度学术]
Moustakim M,Riedel K,Schuller M,et al. Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2[J]. Bioorg Med Chem,2018,26(11):2965-2972. [百度学术]
Upton K,Meyers M,Thorsell AG,et al. Design and synthesis of potent inhibitors of the mono(ADP-ribosyl) transferase,PARP14[J]. Bioorg Med Chem Lett,2017,27(13):2907-2911. [百度学术]
Yoneyama M,Matsumoto S,Toyoda Y,et al. Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation[J]. Biochem Biophys Res Commun,2017,486(3):626-631. [百度学术]
He FH,Tsuda K,Takahashi M,et al. Structural insight into the interaction of ADP-ribose with the PARP WWE domains[J]. FEBS Lett,2012,586(21):3858-3864. [百度学术]
Schenkel L,Molina J,Swinger K,et al. Abstract 1038:a potent and selective PARP14 inhibitor decreases pro-tumor macrophage function and elicits inflammatory responses in tumor explants[C]. //Tumor Biology.American Association for Cancer Research,2020; Philadelphia,PA,2020. [百度学术]
Eckei L,Krieg S,Bütepage M,et al. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases[J]. Sci Rep,2017,7:41746-41764. [百度学术]
Yuen LH,Dana S,Liu Y,et al. A focused DNA-encoded chemical library for the discovery of inhibitors of NA
Han L,Shi H,Luo Y,et al. Gene signature based on B cell predicts clinical outcome of radiotherapy and immunotherapy for patients with lung adenocarcinoma[J]. Cancer Med,2020,9(24):9581-9594. [百度学术]
Lin L,Wang D,Cao N,et al. Whole-transcriptome analysis of hepatocellular carcinoma[J]. Med Oncol,2013,30(4):736-747. [百度学术]
Liu Y,Snow BE,Kickhoefer VA,et al. Vault poly (ADP-Ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo[J]. Mol Cell Biol,2004,24(12):5314-5323. [百度学术]
Amé JC,Spenlehauer C,Murcia GD. The PARP superfamily[J]. BioEssays,2004,26(8):882-893. [百度学术]
Ikeda Y,Kiyotani K,Yew PY,et al. Germline PARP4 mutations in patients with primary thyroid and breast cancers[J]. Endocr Relat Cancer,2016,23(3):171-179. [百度学术]
Kickhoefer VA,Siva AC,Kedersha NL,et al. The 193-Kd vault protein,VPARP,is a novel poly (ADP-ribose) polymerase[J]. J Cell Biol,1999,146(5):917-928. [百度学术]
Wang TT,Lu J,Xu L,et al. Whole genome sequencing of colorectal neuroendocrine tumors and in-depth mutational analyses[J]. Med Oncol,2020,37(6):56-72. [百度学术]
Prawira A,Munusamy P,Yuan J,et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene[J]. Breast Cancer Res Treat,2019,177(23):145-153. [百度学术]
Kaufmann M,Feijs K,Lüscher B. Function and regulation of the mono-ADP-ribosyltransferase ARTD10[J]. Curr Top Microbiol Immunol,2015,384:167-188. [百度学术]
Holechek J,Lease R,Thorsell AG,et al. Design,synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl) transferases PARP10 and PARP14[J]. Bioorg Med Chem Lett,2018,28(11):2050-2054. [百度学术]
Schleicher EM,Galvan AM,Imamura KY,et al. PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress[J]. Nucleic Acids Res,2018,46(17):8908-8916. [百度学术]
Tian L,Yao K,Liu K,et al. PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression[J]. Oncogene,2020,39(12):3145-3162. [百度学术]
Wu CF,Xiao M,Wang YL,et al. PARP10 influences the proliferation of colorectal carcinoma cells,a preliminary study[J]. Mol Biol,2020,54(2):220-228. [百度学术]
Nicolae CM,Aho ER,Vlahos A,et al. The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance[J]. J Biol Chem,2014,289(19):13627-13637. [百度学术]
Venkannagari H,Verheugd P,Koivunen J,et al. Small-molecule chemical probe rescues cells from mono-ADP-ribosyltransferase ARTD10/PARP10-induced apoptosis and sensitizes cancer cells to DNA damage[J]. Cell Chem Biol,2016,23(10):1251-1260. [百度学术]
Murthy S,Desantis J,Verheugd P,et al. 4-(Phenoxy) and 4-(benzyloxy) benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10[J]. Eur J Med Chem,2018,156:93-102. [百度学术]
Morgan RK,Kirby IT,Schmaedick AV,et al. Rational design of cell-active inhibitors of PARP10[J]. ACS Med Chem Lett,2019,10(1):74-79. [百度学术]
Qi G,Kudo Y,Tang B,et al. PARP6 acts as a tumor suppressor via downregulating survivin expression in colorectal cancer[J]. Oncotarget,2016,7(14):18812-18824. [百度学术]
Wang H,Li S,Luo X,et al. Knockdown of PARP6 or survivin promotes cell apoptosis and inhibits cell invasion of colorectal adenocarcinoma cells[J]. Oncol Rep,2017,37(4):2245-2251. [百度学术]
Atasheva S,Akhrymuk M,Frolova EI,et al. New PARP gene with an anti-alphavirus function[J]. J Virol,2012,86(15):8147-8160. [百度学术]
Kirby IT,Kojic A,Arnold MR,et al. A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity[J]. Cell Chem Biol,2018,25(12):1547-1553. [百度学术]
Jwa M,Chang P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response[J]. Nat Cell Biol,2012,14(11):1223-1230. [百度学术]
Wang J,Zhu C,Song D,et al. Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity[J]. Cell Death Discov,2017,3:17034-17043. [百度学术]