摘要
外源性胰岛素的递送对于1型和晚期2型糖尿病的治疗至关重要。传统的注射式给药易引发低血糖,而智能胰岛素系统具有安全、长效、高响应性等优点。葡萄糖氧化酶(glucose oxidase,GOx)能够消耗O2,催化葡萄糖生成葡萄糖酸和H2O2,因此GOx系统的O2水平、H2O2含量及pH大小与系统中的葡萄糖水平密切相关。本文总结了近年关于GOx在闭环胰岛素递送系统中的应用,按照机制分为pH响应、缺氧响应、H2O2响应的单一响应及多重响应,并探讨了GOx在未来应用方面所面临的机遇与挑战。
糖尿病是一种血糖水平异常升高的代谢紊乱类疾病,是人类目前疾病种类中最具有高发性且普遍的慢性疾病,其伴随众多并发症导致死亡率非常
GOx是专一催化β-D-葡萄糖的氧化还原酶,由两个相对分子质量为80 kD的亚基组成,每个亚基结合一个黄素腺嘌呤二核苷酸(FAD)辅

因此,基于GOx的胰岛素递送系统存在众多葡萄糖响应性组分,主要原理是通过GOx氧化血液中的葡萄糖所产生的生理环境的变化触发胰岛素的释放,包括催化氧化产生的局部pH、H2O2浓度和O2水平的变化。当GOx与pH响应性聚合物材料相结合时,高血糖环境下GOx催化葡萄糖产生葡萄糖酸,导致微环境pH发生变化,触发载体构象或结构变化,从而导致预载药物的释放。同时,氧气的消耗使得GOx系统形成原位缺氧微环境,使载体部分组分发生还原反应,破坏载药体系以释放胰岛素。除了清除GOx产生的H2O2以维持酶活性外,H2O2本身也可以作为胰岛素释放的触发器,常分解载体系统中的苯硼酸酯以释放装载药物。
基于GOx的系统常存在酶变性、催化的氧气不足、GOx或其他酶系统的免疫原性、胰岛素负载能力低等问
GOx系统的O2水平、H2O2含量及pH高低与系统中的葡萄糖水平高度相关,故按葡萄糖响应机制可以分为pH响应、缺氧响应、H2O2响应,许多功能性的嵌段物还具有多重响应。因此,本文对近年来GOx介导的单一智能响应、多重智能响应的胰岛素递送进行总结(

Figure 1 Types of intelligent response in GOx mediated insulin delivery
水凝胶是由物理或化学交联形成的具有三维网状结构的高分子聚合

Figure 2 A: Insulin delivery prototype device and its components: (i) A glucose-responsive plug was integrated into an insulin reservoir; (ii) Insulin reservoir made with surface modified silicone; (iii) A surfactant-stabilized insulin solution was encased in the reservoir. B: Photograph showing the insulin delivery device prototype
基于水凝胶的膨胀机制,以壳聚糖为基质的水凝胶和微凝胶在药物释放领域应用广
常用的亲水性材料除聚乙二醇外,右旋糖苷也是理想的材料之一。Di
具有相反电荷的聚合物通过层层组装形成薄膜和微胶
与微凝胶相比,聚合物囊泡的尺寸更小,易通过两亲性共聚物自组装形
已有研究证实,聚(2-(六亚甲基亚胺)甲基丙烯酸乙酯)(PHMEMA)具有快速pH响应(< 5 ms)的特
近年来,宿主-客体相互作用的结合可用于药物载体的合
胶束是以疏水基团为内核、亲水基团为外壳的分子有序聚集体,常作为药物输送载
金属有机框架(MOF)和共价有机框架(COF)是近年来引起大量研究兴趣的一类多孔材
利用C
纳米MOFs(NMOFs)能够形成稳定的晶体结构,具有高装载量及纳米尺寸独特的优良特性。Zhang
GOx在催化葡萄糖过程中消耗氧气,产生局部缺氧环境。2-硝基咪唑(NI) 是一种疏水成分,由于其对肿瘤部位的低氧状态高度敏
基于2-硝基咪唑与2-氨基咪唑的互变原理,Ye

Figure 3 Schematic diagram of oral insulin delivery of hypoxia-responsive vesicles
近年来,H2O2响应在葡萄糖应答系统中的比重逐渐增加,其中最常见的材料为水凝胶和微凝胶。宏观水凝胶具有良好的细胞相容性、中等机械强度和对低浓度H2O2的快速响应
纳米囊泡的结构有利于药物的包载和运送,为胰岛素递送的常见载体类

Figure 4 Schematic of the H2O2-responsive vesicles for glucose-mediated insulin delivery
A: Chemical structure of mPEG-b-P(Ser-PBE) and its degradation products; B: Self-assembly of block copolymer into vesicles; C: PVs were further integrated into microneedle-array patches for smart insulin delivery
介孔二氧化硅纳米颗粒(MSNs)具有较高的表面积、可调节的尺寸和孔隙参
近年来,基于GOx的葡萄糖敏感药物递送膜受到越来越多的关注。分层自组装(LBL)薄膜制备简便,薄膜厚度和渗透性便于控制。Yoshida
在基于GOx的葡萄糖响应性给药过程中,葡萄糖催化氧化反应产生的H2O2会阻止反应继续发生,并且长期使用可能导致自由基诱导的皮肤组织损伤。随着H2O2浓度的升高,GOx类药物载体的葡萄糖敏感性受到限制。因此,及时分解产生的H2O2对于葡萄糖的快速响应、保持GOx的酶活性、维持长效给药时间十分关键。对于单一响应系统,常使用过氧化氢酶清除H2O2并增加O2的含量,但相应的多酶系统不够稳定,葡萄糖敏感性较低。而葡萄糖多重响应系统能够克服上述缺点,在材料中引入H2O2响应或缺氧敏感基团,使载药系统因H2O2或缺氧敏感基团的破坏而改变,最终在葡萄糖的触发下,胰岛素的有效荷载得以释
苯硼酸能够与含高亲和力的二醇类化合物结合,形成可逆的硼酸酯键,表现出对电荷密度、离子强度、二醇类化合物、pH等外部刺激的响应
Wang
除纳米粒外,聚合物胶束也是常用的载体形式。Liu
另一种葡萄糖响应给药的策略是合成缺氧和H2O2双响应聚合物。Yu

Figure 5 A: Schematic of the hypoxia and H2O2 dual-sensitive insulin delivery system; B: Schematic of local inflammation induced by non-H2O2-senstive GRP and the long-term side effect associated with inflammation
葡萄糖在GOx的催化下,产生局部pH和H2O2升高的现象,故pH和H2O2的联合响应具有十分重要的意
利用两亲性宿主-客体自组装形成囊泡的原理,Zou
基于GOx的葡萄糖响应型胰岛素给药系统能够根据血糖水平的升高自发而可控地释放胰岛素,已成为糖尿病治疗的热点之一,并取得了一系列进展。单一的葡萄糖响应系统适应不同个体特定的葡萄糖水平,而多重响应系统则具有更加长效、稳定的血糖控制。迄今为止,基于GOx的葡萄糖响应系统已在相关生理条件和动物实验研究中得到验证。此外,其他响应系统如PBA、葡萄糖结合分子的优良性能也得到了很好的探究,这些系统有望为糖尿病的治疗提供个性化的方案。然而,目前仍缺乏临床试验数据来评估葡萄糖响应性胰岛素给药系统的毒性和疗
葡萄糖响应性胰岛素输送系统面临的挑战如下。
(1)生物相容性问题。理想的响应材料应无严重的体内毒性及长期不良反应。GOx催化葡萄糖氧化为葡萄糖酸和H2O2,后者可引起炎症反应甚至严重的组织损伤。现有的许多生物可降解和生物相容的材料,如聚丙烯酸和多糖,常被用于制备基于GOx的基质。一些策略有望减轻H2O2的伤害,如在PBA和GOx的双重响应系统中,GOx催化产生的H2O2与PBA反应,从而消耗H2O2。此外,基于GOx和PBA的反应系统能够维持长达十几个小时的降糖效果,具有更加迅速的葡萄糖响应
(2)可靠性问题。在GOx系统的疗效验证过程中,实验水平的体外缓冲液与糖尿病小鼠体内真实的生理环境存在一定的差异,突发释放、葡萄糖响应率、低血糖等问题成为阻碍临床研究的重要因素。
(3)酶活性问题。在长期葡萄糖触发的胰岛素输送过程中,GOx的生物活性应得以保持。而GOx药物在制备和储存过程中,常出现生物活性下降的现象。酶的处理过程中采用简化的制备方法,有利于维持GOx的活性。
(4)敏感性问题。在GOx氧化葡萄糖的过程中,由于生成H2O2和消耗O2,响应载体对葡萄糖的敏感性降低。已有一些策略用于提高葡萄糖的敏感性,如将GOx与CAT或血红蛋白结
在医学及临床领域,GOx在治疗糖尿病及其并发症方面也发挥着重要作用。如采用葡萄糖氧化酶法诊断妊期糖尿病,检测糖化血红蛋白含量以预防糖尿病及其并发症,联合NO疗法治疗糖尿病肾
References
Xu SS,Zhang HB,Zhou JP,et al. Advances of new antidiabetic drugs[J]. J China Pharm Univ (中国药科大学学报),2011,42(2):97-106. [百度学术]
van Dieren S,Beulens JWJ,van der Schouw YT,et al. The global burden of diabetes and its complications:an emerging pandemic[J]. Eur J Cardiovasc Prev Rehabilitation,2010,17(Suppl 1):S3-S8. [百度学术]
Frizziero L,Calciati A,Torresin T,et al. Diabetic macular edema treated with 577-nm subthreshold micropulse laser:a real-life,long-term study[J]. J Pers Med,2021,11(5):405. [百度学术]
Ma RJ,Shi LQ. Phenylboronic acid-based glucose-responsive polymeric nanoparticles:synthesis and applications in drug delivery[J]. Polym Chem,2014,5(5):1503-1518. [百度学术]
Li CY,Huang WL,Qian H. Advances in the research of long-acting strategy of insulin and GLP-1 analogs[J]. J China Pharm Univ (中国药科大学学报),2018,49(6):660-670. [百度学术]
Chai ZH,Dong HY,Sun XY,et al. Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice[J]. Int J Biol Macromol,2020,159:640-647. [百度学术]
Mo R,Jiang TY,Di J,et al. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery[J]. Chem Soc Rev,2014,43(10):3595-3629. [百度学术]
Wang J,Wang Z,Yu J,et al. Glucose-responsive insulin and delivery systems:innovation and translation[J]. Adv Mater,2020,32(13):e1902004. [百度学术]
Ravaine V,Ancla C,Catargi B. Chemically controlled closed-loop insulin delivery[J]. J Control Release,2008,132(1):2-11. [百度学术]
Wu Q,Wang L,Yu H,et al. Organization of glucose-responsive systems and their properties[J]. Chem Rev,2011,111(12):7855-7875. [百度学术]
Zhao L,Wang L,Zhang Y,et al. Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment[J]. Polymers (Basel),2017,9(7). DOI:10.3390/polym9070255. [百度学术]
Zhang M,Song CC,Du FS,et al. Supersensitive oxidation-responsive biodegradable PEG hydrogels for glucose-triggered insulin delivery[J]. ACS Appl Mater Interfaces,2017,9(31):25905-25914. [百度学术]
Dong Y,Wang W,Veiseh O,et al. Injectable and glucose-responsive hydrogels based on boronic acid-glucose complexation[J]. Langmuir,2016,32(34):8743-8747. [百度学术]
Liu XY,Li C,Lv J,et al. Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin[J]. ACS Appl Bio Mater,2020,3(3):1598-1606. [百度学术]
Gordijo CR,Koulajian K,Shuhendler AJ,et al. Nanotechnology-enabled closed loop insulin delivery device:in vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control[J]. Adv Funct Mater,2011,21(1):73-82. [百度学术]
Wu Z,Zhang S,Zhang X,et al. Phenylboronic acid grafted chitosan as a glucose-sensitive vehicle for controlled insulin release[J]. J Pharm Sci,2011,100(6):2278-2286. [百度学术]
Gu Z,Dang TT,Ma M,et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery[J]. ACS Nano,2013,7(8):6758-6766. [百度学术]
Anirudhan TS,Nair AS,Nair SS. Enzyme coated beta-cyclodextrin for effective adsorption and glucose-responsive closed-loop insulin delivery[J]. Int J Biol Macromol,2016,91:818-827. [百度学术]
Kim MY,Kim J. Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery[J]. ACS Biomater Sci Eng,2017,3(4):572-578. [百度学术]
Di J,Yu JC,Ye YQ,et al. Engineering synthetic insulin-secreting cells using hyaluronic acid microgels integrated with glucose-responsive nanoparticles[J]. Cell Mol Bioeng,2015,8(3):445-454. [百度学术]
Fu Y,Liu W,Wang LY,et al. Erythrocyte-membrane-camouflaged nanoplatform for intravenous glucose-responsive insulin delivery[J]. Adv Funct Mater,2018,28(41):1802250. [百度学术]
Mohammadpour F,Hadizadeh F,Tafaghodi M,et al. Preparation,in vitro and in vivo evaluation of PLGA/chitosan based nano-complex as a novel insulin delivery formulation[J]. Int J Pharm,2019,572:118710. [百度学术]
Gu Z,Aimetti AA,Wang Q,et al. Injectable nano-network for glucose-mediated insulin delivery[J]. ACS Nano,2013,7(5):4194-4201. [百度学术]
Zhao L,Xiao C,Wang L,et al. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery[J]. Chem Commun (Camb),2016,52(49):7633-7652. [百度学术]
Zhou X,Wu H,Long R,et al. Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation[J]. J Nanobiotechnology,2020,18(1):96. [百度学术]
Tai W,Mo R,Di J,et al. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin[J]. Biomacromolecules,2014,15(10):3495-3502. [百度学术]
Zhou K,Wang Y,Huang X,et al. Tunable,ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells[J]. Angew Chem Int Ed Engl,2011,50(27):6109-6114. [百度学术]
Luo FQ,Chen GJ,Xu W,et al. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery[J]. Nano Res,2021,14(8):2689-2696. [百度学术]
Tong ZZ,Zhou JY,Huang RS,et al. Dual-responsive supramolecular self-assembly of inclusion complex of an azobenzene-ended poly(ε-caprolactone) with a water-soluble pillar[6]Arene and its application in controlled drug release[J]. J Polym Sci Part A:Polym Chem,2017,55(15):2477-2482. [百度学术]
Zuo M,Qian W,Xu Z,et al. Multiresponsive supramolecular theranostic nanoplatform based on pillar[5]Arene and diphenylboronic acid derivatives for integrated glucose sensing and insulin delivery[J]. Small,2018,14(38):e1801942. [百度学术]
Lin YH,Hu W,Bai XW,et al. Glucose- and pH-responsive supramolecular polymer vesicles based on host-guest interaction for transcutaneous delivery of insulin[J]. ACS Appl Bio Mater,2020,3(9):6376-6383. [百度学术]
Ma RJ,Sun XC,Liu XJ,et al. Complex micelles with glucose-responsive shells for self-regulated release of glibenclamide[J]. Aust J Chem,2014,67(1):127. [百度学术]
Gaballa H,Theato P. Glucose-responsive polymeric micelles via boronic acid-diol complexation for insulin delivery at neutral pH[J]. Biomacromolecules,2019,20(2):871-881. [百度学术]
Li X,Shang H,Wu W,et al. Glucose-responsive micelles for controlled insulin release based on transformation from amphiphilic to double hydrophilic[J]. J Nanosci Nanotechnol,2016,16(6):5457-5463. [百度学术]
Chen Y,Li P,Modica JA,et al. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery:protein encapsulation,protection,and release[J]. J Am Chem Soc,2018,140(17):5678-5681. [百度学术]
Zhang C,Hong S,Liu MD,et al. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery[J]. J Control Release,2020,320:159-167. [百度学术]
Yang XX,Feng P,Cao J,et al. Composition-engineered metal-organic framework-based microneedles for glucose-mediated transdermal insulin delivery[J]. ACS Appl Mater Interfaces,2020,12(12):13613-13621. [百度学术]
Jamwal S,Ram B,Ranote S,et al. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery[J]. Int J Biol Macromol,2019,123:968-978. [百度学术]
Zhang G,Ji Y,Li X,et al. Polymer-covalent organic frameworks composites for glucose and pH dual-responsive insulin delivery in mice[J]. Adv Healthc Mater,2020,9(14):e2000221. [百度学术]
Chen WH,Luo GF,Vázquez-González M,et al. Glucose-responsive metal-organic-framework nanoparticles act as "Smart" sense-and-treat carriers [J]. ACS Nano,2018,12(8):7538-7545. [百度学术]
Patel A,Sant S. Hypoxic tumor microenvironment:opportunities to develop targeted therapies[J]. Biotechnol Adv,2016,34(5):803-812. [百度学术]
Thambi T,Deepagan VG,Yoon HY,et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery[J]. Biomaterials,2014,35(5):1735-1743. [百度学术]
Yu JC,Qian CG,Zhang YQ,et al. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery[J]. Nano Lett,2017,17(2):733-739. [百度学术]
Yu JC,Zhang YQ,Ye YQ,et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery[J]. Proc Natl Acad Sci USA,2015,112(27):8260-8265. [百度学术]
Thambi T,Deepagan VG,Yoon HY,et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery[J]. Biomaterials,2014,35(5):1735-1743. [百度学术]
Matsumoto A,Ishii T,Nishida J,et al. A synthetic approach toward a self-regulated insulin delivery system[J]. Angew Chem Int Ed Engl,2012,51(9):2124-2128. [百度学术]
Bratlie KM,York RL,Invernale MA,et al. Materials for diabetes therapeutics[J]. Adv Healthc Mater,2012,1(3):267-284. [百度学术]
Ye YQ,Yu JC,Wang C,et al.Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery [J]. Adv Mater,2016,28(16):3115-3121. [百度学术]
Yao Y,Zhao LY,Yang JJ,et al. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH[J]. Biomacromolecules,2012,13(6):1837-1844. [百度学术]
Wang J,Ye Y,Yu J,et al. Core-shell microneedle gel for self-regulated insulin delivery[J]. ACS Nano,2018,12(3):2466-2473. [百度学术]
Huang Q,Wang L,Yu H,et al. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy[J]. J Control Release,2019,305:50-64. [百度学术]
Hu XL,Yu JC,Qian CG,et al. H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery[J]. ACS Nano,2017,11(1):613-620. [百度学术]
Hei MY,Wu HJ,Fu Y,et al. Phenylboronic acid functionalized silica nanoparticles with enlarged ordered mesopores for efficient insulin loading and controlled release[J]. J Drug Deliv Sci Technol,2019,51:320-326. [百度学术]
Xu B,Jiang G,Yu W,et al. H2O2-Responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucose-monitored transdermal delivery of insulin[J]. J Mater Chem B,2017,5(41):8200-8208. [百度学术]
Yoshida K,Awaji K,Shimizu S,et al. Preparation of microparticles capable of glucose-induced insulin release under physiological conditions[J]. Polymers,2018,10(10):1164. [百度学术]
Tong ZZ,Zhou JY,Zhong JX,et al. Glucose- and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats[J]. ACS Appl Mater Interfaces,2018,10(23):20014-20024. [百度学术]
Wang YX,Fan YT,Zhang MH,et al. Glycopolypeptide nanocarriers based on dynamic covalent bonds for glucose dual-responsiveness and self-regulated release of insulin in diabetic rats[J]. Biomacromolecules,2020,21(4):1507-1515. [百度学术]
Hou L,Zheng YZ,Wang YC,et al. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery[J]. ACS Appl Mater Interfaces,2018,10(26):21927-21938. [百度学术]
Zhang Y,Wang J,Yu J,et al. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery[J]. Small,2018,14(14):e1704181. [百度学术]
Liu F,Bai L,Zhang H,et al. Smart H2O2-responsive drug delivery system made by halloysite nanotubes and carbohydrate polymers[J]. ACS Appl Mater Interfaces,2017,9(37):31626-31633. [百度学术]
Shen D,Yu HJ,Wang L,et al. Glucose-responsive hydrogel-based microneedles containing phenylborate ester bonds and N-isopropylacrylamide moieties and their transdermal drug delivery properties[J]. Eur Polym J,2021,148:110348. [百度学术]
Wang C,Ye YQ,Sun WJ,et al. Red blood cells for glucose-responsive insulin delivery[J]. Adv Mater,2017,29(18):1606617. [百度学术]
Sokolovska J,Isajevs S,Baumane L,et al. Enhanced expression of xanthine oxidase and NO synthases causing the overproduction of NO in kidneys of diabetic animals can be reduced by 1,4-dihydropyridines[J]. Nitric Oxide,2013,31:S15. [百度学术]