摘要
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是与代谢功能障碍密切相关的一系列慢性肝病,其发病机制复杂,至今仅有一款PPAR-α/γ双重激动剂Saroglitazar上市,用于治疗非肝硬化非酒精性脂肪性肝炎。针对NAFLD发病机制中的相同或不同靶点和信号通路开发的联合治疗策略能有望实现药物与药物间的协同作用,小分子药物联用、RNAi联合疗法和化学基因疗法是目前极富前景的联合治疗策略。此外,设计安全、有效和特异性的药物递送系统能改善小分子药物与基因药物的成药性,并促进其临床转化和产业化。因此,本文介绍了小分子药物联用、基于RNAi的核酸药物联用和小分子与核酸药物联用的最新研发现状及其递送方式,以期为NAFLD的治疗提供新的思路与方法。
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是最常见的与代谢功能障碍相关的一系列慢性肝病。据流行病学统计,过去30年间,NAFLD在普通人群中的患病率为25%,而在肥胖人群中的患病率约为90%,且呈逐年上升的趋
目前,研究者针对NAFLD发生和发展的复杂性和多因素性,提出了经典的“双重打击学说
针对NAFLD复杂的发病机制,目前有多种治疗药物用于NAFLD/NASH和肝纤维化的治疗,包括胆汁酸代谢调节剂、葡萄糖代谢调节剂、炎症抑制剂、纤维生成抑制剂和脂肪生成抑制剂
目前针对NAFLD联合疗法的临床试验正在如火如荼地开展,和单一疗法相比,联合疗法具备以下优
在肝脏纤维化的进程中,肝脏组织的结构遭到破坏,ECM大量沉积,肝脏血流灌注减少,导致肝脏细胞对治疗药物的摄取减少,极大地降低了疗效;由于缺乏靶向性,治疗药物被非目的细胞摄取后,极易产生细胞毒性和副作用。纳米载体可提高负载药物的稳定性,改善药物的溶解性,可同时负载多种药物;能主动或被动靶向至肝脏中不同的目的细胞,实现特异性药物递送并降低全身毒
基于NAFLD发病的不同分子生物学机制,并发现有效靶点的小分子药物的联用,是NAFLD治疗过程中最常见的联合用药策略。首先,针对炎症相关通路和胆汁酸代谢的调节,是联合治疗NAFLD的策略之一。NAFLD发病机制涉及肝脏外炎症细胞向肝损伤部位的募集,该过程主要由趋化因子与其受体之间的相互作用所介导,并涉及将骨髓来源的单核细胞和巨噬细胞募集到损伤部位,通过产生炎性细胞因子和趋化因子,进而进一步放大免疫反应并诱导肝星状细胞的活
其次,联合抑制纤维化和炎症,也可用于治疗NAFLD。上皮细胞向间充质转化(epithelial to mesenchymal transition,EMT)是指上皮细胞丢失上皮特性转变为具有运动性、迁移性和侵袭性的纺锤状间质细
此外,作用于同一信号通路不同靶点的抗纤维化药物的联用,可减轻药物不良反应,提高治疗NAFLD的安全性。丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)级联反应的激活会促进肝星状细胞向肌成纤维细胞转化,并导致异常的血管生成,最终诱导肝纤维化的形成。因此,抑制MAPK信号通路也是肝纤维化的治疗策略之一。Sorafenib是一种靶向MAPK级联反应中的细胞表面酪氨酸激酶受体和细胞内丝氨酸/苏氨酸激酶的多激酶抑制剂,对Raf激酶、血管内皮生长因子(vascular endothelial growth factor,VEGF)和血小板衍生生长因子受体(platelet-derived growth factor receptor,PDGFR)等均有
由于NAFLD/NASH发病机制的错综复杂性,对于没有合适作用“口袋”的重要靶点,小分子药物较难开发;大部分小分子药物半衰期较短,需频繁给药,患者顺应性差;小分子药物由于结构较小,易作用于多个靶点,引起患者不良反应。小核酸类药物能通过RNA干扰,诱发对mRNA高效特异性降解的现象,达到对特定蛋白水平调控的目的,从而实现在对NAFLD疾病的源头治疗。与小分子药物相比,小核酸类药物具有候选靶点丰富,作用范围广泛,并可连续数周沉默基因表达的优势。近几年新发现,siRNA、miRNA、反义寡核苷酸(antisense oligonucleotides,ASO)和核酸适配体等在NAFLD的发病进程发挥着重要作用,这对于NAFLD的治疗干预至关重要。但是,核酸类药物在体内稳定性差、易被迅速降解、不易在靶组织中积累,且具有高分子量、阴离子电荷和亲水性等理化性质,导致这类药物不易透过靶细胞膜,难以与细胞质中的RNA诱导沉默复合物(RNA-induced silencing complex,RISC)结合发挥沉默基因的作用。因此,设计出一种安全有效的核酸药物递送系统,是最大限度发挥核酸类药物治疗效果的关键。
目前,已有少数核酸类药物进入临床研究阶段(见

图1 GalNAc-siRNA和ASO递送至肝实质细胞的作用机制
ASO:反义寡核苷酸;ASGPR:去唾液酸糖蛋白受体
肝组织中胶原的大量积累与沉积是肝纤维化最为显著的临床特征,靶向不同信号通路但共同抑制肝星状细胞中胶原生成的核酸药物的联用,是联合治疗NAFLD的策略之一。首先,miRNA-29b是肝纤维化的关键治疗靶点,miRNA‐29b能直接与Col1α1 mRNA的3'-UTR序列结合抑制胶原生成,还能间接阻断TGF-β1/Smad3 (mothers against decapentaplegic homolog 3)或Hh信号通
通过反向调节胶原蛋白合成和降解来逆转胶原蛋白积累,也是治疗肝纤维化的联合治疗策略之一。肝组织中胶原的大量积累与沉积,与金属蛋白酶抑制剂TIMP-1在肝脏组织中的过度表达,胶原蛋白的降解受到阻滞密切相关。Qiao
由此可见,基因药物联合疗法在改善肝功能和缓解肝纤维化方面表现出显著的疗效。
核酸药物通过直接上调或下调特定基因的表达,对特定蛋白水平进行调控,但由于NAFLD发病机制的复杂性,仅使用核酸药物未必能最大限度地发挥治疗NAFLD的作用。化学基因疗法即结合化学和基因药物的治疗,已被提出作为实现协同效应的策略之一,这一概念已在癌症治疗中得到充分证
首先,核酸药物和小分子药物可作用于同一靶点协同抑制胶原生成,治疗肝纤维化。水飞蓟素(silymarin)是从菊科草本植物乳蓟(Silybum marianum Linn.Gaertn)的种子中提取得到的一类黄酮木脂素类化合物,由水飞蓟宾(silibinin)、水飞蓟宁、水飞蓟丁以及异水飞蓟宾4种同分异构体组成,其中以silibinin含量最高,活性最强。临床研究结果表明,silibinin具有稳定肝细胞膜、保护肝细胞不受损害;清除氧自由基、减轻毒性物质引起的脂质过氧化反应;抑制Col1α1 mRNA的表达,延缓早期和晚期肝纤维化中的胶原蛋白积聚,已被广泛应用于各种急慢性肝病、肝纤维化和肝硬
其次,具有抑制纤维化作用的核酸药物和小分子药物联用,还可通过作用于不同靶点,实现对肝纤维化的协同治疗。如前所述,miR-29b1在肝纤维化的发病进程中起关键作用,并在大多数肝纤维化患者和相关动物模型中呈下调的趋势;miR-29b1能直接抑制胶原生成,间接阻断TGF-β1/Smad3通
最后具有抑制纤维化的核酸药物和具有抑制炎症的小分子药物联用,也是治疗NAFLD/NASH和肝纤维化的联合治疗策略之一。肝炎病毒、酒精、非酒精性脂肪性肝炎和肝毒性药物等诱导的慢性肝损伤能导致肝脏缺氧微环境的形成,从而提高VEGF的表达水平,通过促进肝脏血管生成加速肝纤维化进
NAFLD是由多种细胞、多种细胞因子和多种信号通路等相互作用,导致代谢紊乱而衍生出的慢性疾病,其中肝星状细胞的激活是形成肝纤维化进程中最为关键的因素;目前对NAFLD/NASH的治疗已有丰富的潜在治疗靶点,全球多家大型制药企业都在竞相开发NAFLD新药且有多种药物已进入临床试验阶段,除了被印度DCGI批准的PPARα/γ双重激动剂saroglitazar,至今还未有NAFLD的相关治疗药物被批准上市,这表明NAFLD的患者难以从单一疗法获益;因此,研究者逐渐将目光聚焦于NAFLD发病机制中的不同靶点和信号通路,并开发相关的联合治疗策略,以期实现药物与药物的协同效应,减缓NAFLD疾病进展甚至逆转NAFLD。小分子药物联用、RNAi疗法和化学基因疗法是目前极富前景的联合治疗策略,各个策略的研发情况及递送方式见
安全高效的肝脏靶向递送策略有利于最大限度地减少小核酸药物的脱靶作用,进而发挥药物治疗NAFLD的作用。NAFLD患者的肝脏中胶原蛋白和纤维蛋白大量沉积、血流灌注量减少,形成肝脏药物递送的物理屏障,这会严重阻碍递送系统的有效性和肝脏细胞对治疗药物的摄取率。目前已有大量研究者设计了不同的纳米载体如脂质体、固体脂质纳米粒和聚合物胶束等用于肝脏的递送,并通过在载体表面修饰不同的特异性配体,将药物选择性地递送至肝星状细胞、肝实质细胞和枯否细胞(

图2 NAFLD治疗的相关药物递送系统
References
Younossi ZM. Non-alcoholic fatty liver disease—A global public health perspective[J]. J Hepatol,2019,70(3):531-544. [百度学术]
Guo YT,Chen J,Liu N,et al. Association of circulating TXNIP levels with fatty liver in newly diagnosed type 2 diabetes mellitus[J]. Diabetes Metab Syndr Obes,2022,15:225-233. [百度学术]
Sodum N,Kumar G,Bojja SL,et al. Epigenetics in NAFLD/NASH:targets and therapy[J]. Pharmacol Res,2021,167:105484. [百度学术]
Rives C,Fougerat A,Ellero-Simatos S,et al. Oxidative stress in NAFLD:role of nutrients and food contaminants[J]. Biomolecules,2020,10(12):1702. [百度学术]
Safari Z,Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD)[J]. Cell Mol Life Sci,2019,76(8):1541-1558. [百度学术]
Ahrari A,Najafzadehvarzi H,Taravati A,et al. The inhibitory effect of PLGA-encapsulated berberine on hepatotoxicity and α-smooth muscle actin (α-SMA) gene expression[J]. Life Sci,2021,284:119884. [百度学术]
Juanola O,Martínez-López S,Francés R,et al. Non-alcoholic fatty liver disease:metabolic,genetic,epigenetic and environmental risk factors[J]. Int J Environ Res Public Health,2021,18(10):5227. [百度学术]
Prikhodko VA,Bezborodkina NN,Okovityi SV. Pharmacotherapy for non-alcoholic fatty liver disease:emerging targets and drug candidates[J]. Biomedicines,2022,10(2):274. [百度学术]
Dufour JF,Caussy C,Loomba R. Combination therapy for non-alcoholic steatohepatitis:rationale,opportunities and challenges[J]. Gut,2020,69(10):1877-1884. [百度学术]
Böttger R,Pauli G,Chao PH,et al. Lipid-based nanoparticle technologies for liver targeting[J]. Adv Drug Deliv Rev,2020,154/155:79-101. [百度学术]
Peng W,Cheng SM,Bao ZH,et al. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis[J]. Biomed Pharmacother,2021,137:111342. [百度学术]
Tacke F. Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis[J]. Expert Opin Investig Drugs,2018,27(3):301-311. [百度学术]
Radun R,Trauner M. Role of FXR in bile acid and metabolic homeostasis in NASH:pathogenetic concepts and therapeutic opportunities[J]. Semin Liver Dis,2021,41(4):461-475. [百度学术]
Kumar V,Xin XF,Ma JY,et al. Therapeutic targets,novel drugs,and delivery systems for diabetes associated NAFLD and liver fibrosis[J]. Adv Drug Deliv Rev,2021,176:113888. [百度学术]
Ratziu V,Sanyal A,Harrison SA,et al. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis:final analysis of the phase 2b CENTAUR study[J]. Hepatology,2020,72(3):892-905. [百度学术]
Pedrosa M,Seyedkazemi S,Francque S,et al. A randomized,double-blind,multicenter,phase 2b study to evaluate the safety and efficacy of a combination of tropifexor and cenicriviroc in patients with nonalcoholic steatohepatitis and liver fibrosis:study design of the TANDEM trial[J]. Contemp Clin Trials,2020,88:105889. [百度学术]
Griggs LA,Hassan NT,Malik RS,et al. Fibronectin fibrils regulate TGF-β1-induced epithelial-mesenchymal transition[J]. Matrix Biol,2017,60/61:157-175. [百度学术]
Kumar V,Dong YX,Kumar V,et al. The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis[J]. Theranostics,2019,9(25):7537-7555. [百度学术]
Kumar V,Mundra V,Mahato RI. Nanomedicines of hedgehog inhibitor and PPAR-γ agonist for treating liver fibrosis[J]. Pharm Res,2014,31(5):1158-1169. [百度学术]
Romualdo GR,da Silva TC,de Albuquerque Landi MF,et al. Sorafenib reduces steatosis-induced fibrogenesis in a human 3D co-culture model of non-alcoholic fatty liver disease[J]. Environ Toxicol,2021,36(2):168-176. [百度学术]
Ma R,Chen J,Liang YL,et al. Sorafenib:a potential therapeutic drug for hepatic fibrosis and its outcomes[J]. Biomed Pharmacother,2017,88:459-468. [百度学术]
Chen Y,Liu YC,Sung YC,et al. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors[J]. Sci Rep,2017,7:44123. [百度学术]
Sung YC,Liu YC,Chao PH,et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development[J]. Theranostics,2018,8(4):894-905. [百度学术]
Shafie F,Nabavizadeh F,Shafie Ardestani M,et al. Sorafenib-loaded PAMAM dendrimer attenuates liver fibrosis and its complications in bile-duct-ligated rats[J]. Can J Physiol Pharmacol,2019,97(8):691-698. [百度学术]
Keating GM. Sorafenib:a review in hepatocellular carcinoma[J]. Target Oncol,2017,12(2):243-253. [百度学术]
Qin LF,Qin JM,Zhen XM,et al. Curcumin protects against hepatic stellate cells activation and migration by inhibiting the CXCL12/CXCR4 biological axis in liver fibrosis:a study in vitro and in vivo[J]. Biomed Pharmacother,2018,101:599-607. [百度学术]
Lung YM,Man FY,Christian S,et al. ARO-HSD,an investigational RNAi therapeutic,demonstrates reduction in ALT and hepatic HSD17B13 mRNA and protein in patients with NASH or suspected NASH[R]. AASLD,2021. https://www.natap.org/2021/AASLD/AASLD_99.htm. [百度学术]
Cui H,Zhu XY,Li SY,et al. Liver-targeted delivery of oligonucleotides with N-acetylgalactosamine conjugation[J]. ACS Omega,2021,6(25):16259-16265. [百度学术]
Ji D,Wang QH,Zhao Q,et al. Co-delivery of miR-29b and germacrone based on cyclic RGD-modified nanoparticles for liver fibrosis therapy[J]. J Nanobiotechnology,2020,18(1):86. [百度学术]
Yu FJ,Chen BC,Dong PH,et al. HOTAIR epigenetically modulates PTEN expression via microRNA-29b:a novel mechanism in regulation of liver fibrosis[J]. Mol Ther,2017,25(1):205-217. [百度学术]
Zeng CX,Wang YL,Xie C,et al. Identification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis[J]. Oncotarget,2015,6(14):12224-12233. [百度学术]
Li J,Ghazwani M,Zhang YF,et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression[J]. J Hepatol,2013,58(3):522-528. [百度学术]
Wu J,Huang JS,Kuang SC,et al. Synergistic microRNA therapy in liver fibrotic rat using MRI-visible nanocarrier targeting hepatic stellate cells[J]. Adv Sci (Weinh),2019,6(5):1801809. [百度学术]
Zhao Z,Li YK,Jain A,et al. Development of a peptide-modified siRNA nano complex for hepatic stellate cells[J]. Nanomedicine,2018,14(1):51-61. [百度学术]
Qiao JB,Fan QQ,Zhang CL,et al. Hyperbranched lipoid-based lipid nanoparticles for bidirectional regulation of collagen accumulation in liver fibrosis[J]. J Control Release,2020,321:629-640. [百度学术]
Boakye CHA,Patel K,Doddapaneni R,et al. Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment[J]. J Control Release,2017,246:120-132. [百度学术]
Gong CN,Hu CL,Gu FF,et al. Co-delivery of autophagy inhibitor ATG7 siRNA and docetaxel for breast cancer treatment[J]. J Control Release,2017,266:272-286. [百度学术]
Zhang BF,Xing L,Cui PF,et al. Mitochondria apoptosis pathway synergistically activated by hierarchical targeted nanoparticles co-delivering siRNA and lonidamine[J]. Biomaterials,2015,61:178-189. [百度学术]
Shrestha B,Wang LJ,Brey EM,et al. Smart nanoparticles for chemo-based combinational therapy[J]. Pharmaceutics,2021,13(6):853. [百度学术]
Salvoza N,Giraudi PJ,Tiribelli C,et al. Natural compounds for counteracting nonalcoholic fatty liver disease (NAFLD):advantages and limitations of the suggested candidates[J]. Int J Mol Sci,2022,23(5):2764. [百度学术]
Jia JD,Bauer M,Cho JJ,et al. Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen α1(I) and TIMP-1[J]. J Hepatol,2001,35(3):392-398. [百度学术]
Song IS,Nam SJ,Jeon JH,et al. Enhanced bioavailability and efficacy of silymarin solid dispersion in rats with acetaminophen-induced hepatotoxicity[J]. Pharmaceutics,2021,13(5):628. [百度学术]
Qiao JB,Fan QQ,Xing L,et al. Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis[J]. J Control Release,2018,283:113-125. [百度学术]
Jung Y,Brown KD,Witek RP,et al. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans[J]. Gastroenterology,2008,134(5):1532-1543. [百度学术]
Kumar V,Mondal G,Dutta R,et al. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis[J]. Biomaterials,2016,76:144-156. [百度学术]
Han J,He YP,Zhao H,et al. Hypoxia inducible factor-1 promotes liver fibrosis in nonalcoholic fatty liver disease by activating PTEN/p65 signaling pathway[J]. J Cell Biochem,2019,120(9):14735-14744. [百度学术]
Hong F,Tuyama A,Lee TF,et al. Hepatic stellate cells express functional CXCR4:role in stromal cell-derived factor-1alpha-mediated stellate cell activation[J]. Hepatology,2009,49(6):2055-2067. [百度学术]
Liu CH,Chan KM,Chiang T,et al. Dual-functional nanoparticles targeting CXCR4 and delivering antiangiogenic siRNA ameliorate liver fibrosis[J]. Mol Pharm,2016,13(7):2253-2262. [百度学术]