摘要
核糖体蛋白(RP)是核糖体的组成成分,在核糖体生物合成及蛋白翻译过程中发挥重要调控作用。此外,RP在细胞中存在非核糖体功能,并可由多种形式的类泛素化修饰介导实现。RP的类泛素化修饰过程对相应RP的功能和亚细胞定位产生不同的影响,并表现出对多个生理病理过程的调控作用。本文主要对RP的SUMOylation、Neddylation和UFMylation等类泛素化系统进行介绍,并对RP的类泛素化修饰过程及其对细胞增殖、凋亡、自噬和蛋白质生命周期调控方面的影响进行总结,为相关疾病的药物治疗或干预措施带来新的启示。
真核胞质核糖体分别由小核糖体亚基(40S)和大核糖体亚基(60S)组装形成80S核糖体。在功能方面,大亚基负责结合tRNA并介导肽基转移,小亚基负责调控mRNA的结合和解
除了参与由核糖体负责的蛋白质翻译及合成以外,RP所发挥的其他作用被称为非核糖体功能,例如调节细胞生长和增殖、细胞凋亡、细胞周期、DNA修复和转录等过

Figure 1 Schematic overview of the Ublylation cascade
Ubiquitin-like protein (UBL) generally exists in a precursor form (except for FAT10). Modified proteins are first cleaved to form an active form with glycine at the C-termini under the catalysis of a de-Ublylation enzyme. Next, the C-terminal glycine in UBL reacts with cysteine residue of the E1 activating enzyme to form a thioester bond. UBL is then transferred to the E2 conjugating enzyme through a similar reaction. E2 conjugating enzyme transfers UBL to substrate proteins by interacting with E3 ligase. The UBL bounds to the substrate can be further cleaved by de-Ublylation enzymes, and the cleaved UBL can undergo Ublylation for next cycle
RP是人类核糖体的重要组成成分,主要参与核糖体的生物合成以及蛋白质的合成。除此以外,越来越引人注目的还有它们所表现出的大量非核糖体功能。研究发现RP在血液病、病毒诱发的免疫反应、肿瘤的发生发展以及肿瘤免疫微环境变化等方面发挥广泛的非核糖体功

Figure 2 Comparison of the ubiquitin-like domain in UBL with the structure of ubiquitin
A: Representative structures of the modifiers (UBL); B: Structural overlays of different modifiers (UBL). The ubiquitin-like domain was compared with the structure of ubiquitin using PyMOL software. The structural information of these proteins was obtained from the Protein Data Bank (PDB) database or AlphaFold website: Ubiquitin (PDB 1C3T), SUMO1(PDB 1A5R), NEDD8 (PDB 1NDD), UFM1(PDB 1WXS), a ubiquitin-like domain of ISG15(PDB 1Z2M), a ubiquitin-like domain of FAT10(AlphaFold AF-O15205-F1)
小类泛素修饰因子(small ubiquitin-like modifier, SUMO)最初在酿酒酵母中被发现,称为Smt3,后来被发现普遍存在于其他真核生物。在人体中,SUMO存在3种形式:SUMO-1、SUMO-2和SUMO-3,其中SUMO-1最受关
神经前体细胞表达的发育性下调蛋白8(neural precursor cell-expressed developmentally downregulated 8,NEDD8)与泛素的序列以及结构都极为相似,NEDD8与泛素的序列同源性约60%,远远超过了其他的UB
Neddylation修饰过程与Ubiquitination类似,暴露C末端甘氨酸的NEDD8与NEDD8激活酶(NEDD8-activating enzyme, NAE)的半胱氨酸残基反应结合形成硫酯键,其中NAE由NAE1(也称为APPBP1)和UBA3组
Xirodimas
泛素折叠修饰酶1(ubiquitin-fold modifier 1, UFM1)是近年发现的新型类泛素蛋白之一,对胚胎发育至关重
迄今,已报道能被UFMylation修饰的底物较少,可能与目前所知参与UFMylation修饰的酶种类较为单一有关,尤其是目前仅有UFL1一种E3连接酶,而在类泛素化修饰中E3连接酶的数量与底物多样性有着紧密的联
干扰素刺激基因15(interferon-stimulated gene 15,ISG15)和人类白细胞抗原F介导转录因子10(human leukocyte antigen-F adjacent transcript 10,FAT10)是另外两种UBL,它们与UFM1类似,都是脊椎动物特有的。与SUMO、NEDD8和UFM1不同的是,它们包含有两个与泛素相似的结构
FAT10于20世纪90年代被首次发现,它的两个结构域与泛素分别有着29%和36%的序列同源
目前关于ISGylation和FATylation修饰的功能研究还比较少,发现的底物蛋白种类也较少。近来有研究表明,非常重要的一个核糖体相关蛋白4EHP能够发生ISGylation修饰进而增强它的cap结合活性。4EHP是一种能够结合mRNA 5′cap结构的结合蛋白,在抑制缺陷mRNA翻译起始方面有着重要的功
细胞增殖对于组织器官的发育和生物体的生长至关重要。大量研究发现,细胞增殖的异常与胚胎发育缺陷、血液病以及恶性肿瘤等疾病的发生发展密切相关。近年来,越来越多的研究表明类泛素化修饰系统对于细胞生长的调控发挥重要的作用(

Figure 3 Involvements of RP Ublylation in the regulations of cell functions
RP的类泛素化修饰在细胞凋亡和自噬方面也显示出重要的作用。RPL26被发现是UFMylation修饰的主要底物蛋白。RPL26位于核糖体易位子SEC61附近,而RPL26的UFMylation修饰能够调控新生蛋白易位至内质
在哺乳动物细胞中,有几乎一半的RP能够发生Neddylation修饰。同时,当细胞内的Neddylation修饰过程被抑制时,RP的稳定性明显下
随着人们逐渐意识到蛋白质翻译后修饰过程对于维持机体正常生理活动以及多种疾病发生发展的重要性,关于新型类泛素化修饰系统的研究越来越多。RP是引人注目的一类参与类泛素化修饰过程中的底物。研究表明,RP与UBL的结合能够广泛调节RP和MDM2-p53信号通路中的蛋白稳定性,影响RP的非核糖体功能。同时,RP功能紊乱也会引发许多疾病,包括恶性肿瘤等。除RP以外,其他多个肿瘤相关分子也被报道是类泛素化修饰的底物,比如c-MYC、p53、Akt、PTEN和Rb
鉴于上述原因,以类泛素化修饰为靶点来寻找新的抗肿瘤药物已经成为一种新的策略。从机制角度出发,人们可以分别设计靶向并干预E1、E2、E3或去修饰酶活性的药物。但是,考虑到不同修饰系统组成间的差异,针对它们的靶点选择会有所不同。例如,靶向SUMOylation修饰系统的小分子抑制剂分别由靶向SAE1/2(E1)、UBC9(E2)和SENPs(去SUMOylation修饰)的化合物组成。这些化合物既有天然产物也有化学设计和合成,它们已经在临床前研究模型中显示出良好的抗肿瘤活性,有望推进至临床研究阶
通过加速解析其他类泛素化修饰系统的作用机制,发现和验证更多潜在的疾病治疗靶点,将为筛选或理性设计抗肿瘤药物奠定扎实的基础。从药物设计角度考虑,如果设计能抑制E1酶活性的小分子抑制剂,可以通过直接靶向半胱氨酸活性位点、占据ATP结合口袋或占据底物结合位点等方式发挥作
活跃生长的细胞需要动态调节RP的数量和活性以维持细胞生物合成的正常功能。其中,翻译后修饰是不可或缺的调节蛋白质功能多样性的手段。近年来,越来越多的研究聚焦于类泛素化修饰过程。由于参与这一过程的修饰物的结构与泛素高度相似,并且同样发生由E1、E2和E3介导的酶级联反应,最终将修饰分子连接到相应的底物并发挥调节底物功能的作用。研究证实,UBL能够修饰RP而调节核糖体的生物合成和蛋白质合成过程。同时,这些类泛素化修饰过程也在很大程度上扩展了RP的非核糖体功能。本课题组前期研究表明,RPL10是胰腺癌治疗的潜在新靶点,且能够通过NF-κB通路影响胰腺癌细胞增
尽管许多质谱数据显示大多数RP都可能是UBL的底物蛋白,但是深入系统的实验验证和功能研究还为数不多。此外,几种UBL与RP的关系尚不清楚,它们是否被修饰及如何被修饰还未被揭示。特别需要关注的是,基于E3酶的底物特异性,往往一类底物的成功发现都离不开全新E3酶的鉴定。与此同时,已有许多研究证实了PTM之间的相互串扰,尤其是在泛素化和类泛素化之
RP作为参与发挥细胞功能的重要蛋白,其类泛素化修饰以及带来的功能变化已成为类泛素化修饰研究领域的重要方面。随着类泛素化修饰与疾病发生发展研究的不断深入,越来越多类泛素化修饰途径的抑制剂将被设计和发现,其疾病治疗作用有可能代表了新一代治疗药物及策略。所以,深入探讨和了解RP的类泛素化修饰将有助于深刻认识RP的功能的多样性以及在疾病发生发展中的作用,为进一步探索肿瘤等疾病的发生、预防和药物治疗提供新的依据。
References
Baßler J,Hurt E. Eukaryotic ribosome assembly[J]. Annu Rev Biochem,2019,88:281-306. [百度学术]
de la Cruz J,Gómez-Herreros F,Rodríguez-Galán O,et al. Feedback regulation of ribosome assembly[J]. Curr Genet,2018,64(2):393-404. [百度学术]
Ramu VS,Dawane A,Lee S,et al. Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance[J]. Mol Plant Pathol,2020,21(11):1481-1494. [百度学术]
Johnson AG,Flynn RA,Lapointe CP,et al. A memory of ES25 loss drives resistance phenotypes[J]. Nucleic Acids Res,2020,48(13):7279-7297. [百度学术]
Li YY,Zhang JT,Sun HL,et al. Lnc-Rps4l-encoded peptide RPS4XL regulates RPS6 phosphorylation and inhibits the proliferation of PASMCs caused by hypoxia[J]. Mol Ther,2021,29(4):1411-1424. [百度学术]
Jung JH,Lee H,Kim JH,et al. p53-dependent apoptotic effect of puromycin via binding of ribosomal protein L5 and L11 to MDM2 and its combination effect with RITA or doxorubicin[J]. Cancers,2019,11(4):582. [百度学术]
Ebright RY,Lee S,Wittner BS,et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis[J]. Science,2020,367(6485):1468-1473. [百度学术]
Park YJ,Kim SH,Kim TS,et al. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair[J]. Cell Mol Life Sci,2021,78(7):3591-3606. [百度学术]
Odintsova TI,Müller EC,Ivanov AV,et al. Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing[J]. J Protein Chem,2003,22(3):249-258. [百度学术]
Wirth M,Schick M,Keller U,et al. Ubiquitination and ubiquitin-like modifications in multiple myeloma:biology and therapy[J]. Cancers,2020,12(12):3764. [百度学术]
Lezzerini M,Penzo M,O′Donohue MF,et al. Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism[J]. Nucleic Acids Res,2019,48(2):770-787. [百度学术]
Guan JY,Han SC,Wu JE,et al. Ribosomal protein L13 participates in innate immune response induced by foot-and-mouth disease virus[J]. Front Immunol,2021,12:616402. [百度学术]
Liu PY,Tee AE,Milazzo G,et al. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35[J]. Nat Commun,2019,10:5026. [百度学术]
Ribezzo F,Snoeren IAM,Ziegler S,et al. Rps14,Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q-syndrome[J]. Leukemia,2019,33(7):1759-1772. [百度学术]
Swatek KN,Komander D. Ubiquitin modifications[J]. Cell Res,2016,26(4):399-422. [百度学术]
Park J,Cho J,Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res,2020,43(11):1144-1161. [百度学术]
Dougherty SE,Maduka AO,Inada T,et al. Expanding role of ubiquitin in translational control[J]. Int J Mol Sci,2020,21(3):1151. [百度学术]
Cappadocia L,Lima CD. Ubiquitin-like protein conjugation:structures,chemistry,and mechanism[J]. Chem Rev,2018,118(3):889-918. [百度学术]
Oh JG,Watanabe S,Lee A,et al. miR-146a suppresses SUMO1 expression and induces cardiac dysfunction in maladaptive hypertrophy[J]. Circ Res,2018,123(6):673-685. [百度学术]
Lin H,Yan Y,Luo YF,et al. IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion[J]. Nat Commun,2021,12:2461. [百度学术]
Yang JJ,Zhou YL,Xie SD,et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer[J]. J Exp Clin Cancer Res,2021,40(1):206. [百度学术]
Xirodimas DP,Sundqvist A,Nakamura A,et al. Ribosomal proteins are targets for the NEDD8 pathway[J]. EMBO Rep,2008,9(3):280-286. [百度学术]
Müller S,Ledl A,Schmidt D. SUMO:a regulator of gene expression and genome integrity[J]. Oncogene,2004,23(11):1998-2008. [百度学术]
Wang LL,Wansleeben C,Zhao SL,et al. SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development[J]. EMBO Rep,2014,15(8):878-885. [百度学术]
Zhao XL. SUMO-mediated regulation of nuclear functions and signaling processes[J]. Mol Cell,2018,71(3):409-418. [百度学术]
Bernier-Villamor V,Sampson DA,Matunis MJ,et al. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1[J]. Cell,2002,108(3):345-356. [百度学术]
Wang TS,Cao Y,Zheng Q,et al. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism[J]. Mol Cell,2019,75(4):823-834.e5. [百度学术]
Peng Y,Wang ZX,Wang ZQ,et al. SUMOylation down-regulates rDNA transcription by repressing expression of upstream-binding factor and proto-oncogene c-Myc[J]. J Biol Chem,2019,294(50):19155-19166. [百度学术]
Schneeweis C,Hassan Z,Schick M,et al. The SUMO pathway in pancreatic cancer:insights and inhibition[J]. Br J Cancer,2021,124(3):531-538. [百度学术]
Jang CY,Shin HS,Kim HD,et al. Ribosomal protein S3 is stabilized by sumoylation[J]. Biochem Biophys Res Commun,2011,414(3):523-527. [百度学术]
Kasera M,Ingole KD,Rampuria S,et al. Global sumoylome adjustments in basal defenses of arabidopsis thaliana involve complex interplay between small-ubiquitin like modifiers and the negative immune regulator suppressor of rps4-rld1[J]. Front Cell Dev Biol,2021,9:680760. [百度学术]
Haindl M,Harasim T,Eick D,et al. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing[J]. EMBO Rep,2008,9(3):273-279. [百度学术]
Matafora V,D'Amato A,Mori S,et al. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition[J]. Mol Cell Proteom,2009,8(10):2243-2255. [百度学术]
Enchev RI,Schulman BA,Peter M. Protein neddylation:beyond cullin–RING ligases[J]. Nat Rev Mol Cell Biol,2015,16(1):30-44. [百度学术]
Li J,Zou JQ,Littlejohn R,et al. Neddylation,an emerging mechanism regulating cardiac development and function[J]. Front Physiol,2020,11:612927. [百度学术]
Zou T,Zhang JY. Diverse and pivotal roles of neddylation in metabolism and immunity[J]. FEBS J,2021,288(13):3884-3912. [百度学术]
Song QQ,Feng SQ,Peng WJ,et al. Cullin-RING ligases as promising targets for gastric carcinoma treatment[J]. Pharmacol Res,2021,170:105493. [百度学术]
Baek K,Scott DC,Schulman BA. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases[J]. Curr Opin Struct Biol,2021,67:101-109. [百度学术]
Pan ZQ,Kentsis A,Dias DC,et al. Nedd8 on cullin:building an expressway to protein destruction[J]. Oncogene,2004,23(11):1985-1997. [百度学术]
Li QM,Wang SZ. Advances of relationship between protein Neddylation and cancer[J]. J China Pharm Univ(中国药科大学学报),2018,49(3):272-278. [百度学术]
Zhang SZ,Sun Y. Cullin RING ligase 5 (CRL-5):neddylation activation and biological functions[J]. Adv Exp Med Biol,2020,1217:261-283. [百度学术]
Dubiel W,Chaithongyot S,Dubiel D,et al. The COP9 signalosome:a multi-DUB complex[J]. Biomolecules,2020,10(7):1082. [百度学术]
Liu Y,Deisenroth C,Zhang YP. RP-MDM2-p53 pathway:linking ribosomal biogenesis and tumor surveillance[J]. Trends Cancer,2016,2(4):191-204. [百度学术]
Xiong XF,Cui DR,Bi YL,et al. Neddylation modification of ribosomal protein RPS27L or RPS27 by MDM2 or NEDP1 regulates cancer cell survival[J]. FASEB J,2020,34(10):13419-13429. [百度学术]
Sundqvist A,Liu G,Mirsaliotis A,et al. Regulation of nucleolar signalling to p53 through NEDDylation of L11[J]. EMBO Rep,2009,10(10):1132-1139. [百度学术]
Zhou X,Hao Q,Liao J,et al. Ribosomal protein S14 unties the MDM2–p53 loop upon ribosomal stress[J]. Oncogene,2013,32(3):388-396. [百度学术]
Zhang J,Bai D,Ma X,et al. hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14[J]. Oncogene,2014,33(2):246-254. [百度学术]
Mahata B,Sundqvist A,Xirodimas DP. Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner[J]. Oncogene,2012,31(25):3060-3071. [百度学术]
Yang R,Wang HM,Kang BX,et al. CDK5RAP3,a UFL1 substrate adaptor,is crucial for liver development[J]. Development,2019,146(2):dev169235. [百度学术]
Banerjee S,Kumar M,Wiener R. Decrypting UFMylation:how proteins are modified with UFM1[J]. Biomolecules,2020,10(10):1442. [百度学术]
Walczak CP,Leto DE,Zhang LC,et al. Ribosomal protein RPL26 is the principal target of UFMylation[J]. Proc Natl Acad Sci U S A,2019,116(4):1299-1308. [百度学术]
Kumar M,Padala P,Fahoum J,et al. Structural basis for UFM1 transfer from UBA5 to UFC1[J]. Nat Commun,2021,12:5708. [百度学术]
Xie Z,Fang Z,Pan ZZ. Ufl1/RCAD,a Ufm1 E3 ligase,has an intricate connection with ER stress[J]. Int J Biol Macromol,2019,135:760-767. [百度学术]
Wei Y,Xu XZ. UFMylation:a unique & fashionable modification for life[J]. Genom Proteom Bioinform,2016,14(3):140-146. [百度学术]
Witting KF,Mulder MPC. Highly specialized ubiquitin-like modifications:shedding light into the UFM1 Enigma[J]. Biomolecules,2021,11(2):255. [百度学术]
Zheng N,Shabek N. Ubiquitin ligases:structure,function,and regulation[J]. Annu Rev Biochem,2017,86:129-157. [百度学术]
Yoo HM,Kang SH,Kim JY,et al. Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development[J]. Mol Cell,2014,56(2):261-274. [百度学术]
Wang LH,Xu Y,Rogers H,et al. UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis[J]. Cell Res,2020,30(1):5-20. [百度学术]
Simsek D,Tiu GC,Flynn RA,et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity[J]. Cell,2017,169(6):1051-1065.e18. [百度学术]
Schuren ABC,Boer IGJ,Bouma EM,et al. The UFM1 pathway impacts HCMV US2-mediated degradation of HLA class I[J]. Molecules,2021,26(2):287. [百度学术]
van der Veen AG,Ploegh HL. Ubiquitin-like proteins[J]. Annu Rev Biochem,2012,81:323-357. [百度学术]
Perng YC,Lenschow DJ. ISG15 in antiviral immunity and beyond[J]. Nat Rev Microbiol,2018,16(7):423-439. [百度学术]
Mustachio LM,Lu Y,Kawakami M,et al. Evidence for the ISG15-specific deubiquitinase USP18 as an antineoplastic target[J]. Cancer Res,2018,78(3):587-592. [百度学术]
Freitas BT,Scholte FEM,Bergeron É,et al. How ISG15 combats viral infection[J]. Virus Res,2020,286:198036. [百度学术]
Theng SS,Wang W,Mah WC,et al. Disruption of FAT10-MAD2 binding inhibits tumor progression[J]. Proc Natl Acad Sci U S A,2014,111(49):E5282-E5291. [百度学术]
Aichem A,Groettrup M. The ubiquitin-like modifier FAT10-much more than a proteasome-targeting signal[J]. J Cell Sci,2020,133(14):jcs246041. [百度学术]
Lim CB,Zhang DW,Lee CGL. FAT10,a gene up-regulated in various cancers,is cell-cycle regulated[J]. Cell Div,2006,1:20. [百度学术]
Aichem A,Pelzer C,Lukasiak S,et al. USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10,which FAT10ylates itself in cis[J]. Nat Commun,2010,1:13. [百度学术]
Aichem A,Catone N,Groettrup M. Investigations into the auto-FAT10ylation of the bispecific E2 conjugating enzyme UBA6-specific E2 enzyme 1[J]. FEBS J,2014,281(7):1848-1859. [百度学术]
Okumura F,Zou W,Zhang DE. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP[J]. Genes Dev,2007,21(3):255-260. [百度学术]
Spinnenhirn V,Bitzer A,Aichem A,et al. Newly translated proteins are substrates for ubiquitin,ISG15,and FAT10[J]. FEBS Lett,2017,591(1):186-195. [百度学术]
Nahorski MS,Maddirevula S,Ishimura R,et al. Biallelic UFM1 and UFC1 mutations expand the essential role of UFMylation in brain development[J]. Brain,2018,141(7):1934-1945. [百度学术]
Su M,Yue ZH,Wang H,et al. UFMylation is activated in vascular remodeling and lipopolysaccharide-induced endothelial cell injury[J]. DNA Cell Biol,2018,37(5):426-431. [百度学术]
Lin YL,Chung CL,Chen MH,et al. SUMO protease SMT7 modulates ribosomal protein L30 and regulates cell-size checkpoint function[J]. Plant Cell,2020,32(4):1285-1307. [百度学术]
El Motiam A,Vidal S,de la Cruz-Herrera CF,et al. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function[J]. FASEB J,2019,33(1):643-651. [百度学术]
Liang JR,Lingeman E,Luong T,et al. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation[J]. Cell,2020,180(6):1160-1177.e20. [百度学术]
Fernández A,Ordóñez R,Reiter RJ,et al. Melatonin and endoplasmic reticulum stress:relation to autophagy and apoptosis[J]. J Pineal Res,2015,59(3):292-307. [百度学术]
Bailly A,Perrin A,Bou Malhab LJ,et al. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway[J]. Oncogene,2016,35(4):415-426. [百度学术]
Chang SC,Ding JL. Ubiquitination and SUMOylation in the chronic inflammatory tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer,2018,1870(2):165-175. [百度学术]
Baek K,Krist DT,Prabu JR,et al. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly[J]. Nature,2020,578(7795):461-466. [百度学术]
Liu J,Guan D,Dong MG,et al. UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination[J]. Nat Cell Biol,2020,22(9):1056-1063. [百度学术]
Wang FT,Zhao B. UBA6 and its bispecific pathways for ubiquitin and FAT10[J]. Int J Mol Sci,2019,20(9):2250. [百度学术]
Laplaza JM,Bostick M,Scholes DT,et al. Saccharomyces cerevisiae ubiquitin-like protein Rub1 conjugates to cullin proteins Rtt101 and Cul3 in vivo[J]. Biochem J,2004,377(Pt 2):459-467. [百度学术]
Petroski MD,Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases[J]. Nat Rev Mol Cell Biol,2005,6(1):9-20. [百度学术]
Sun XX,Chen YX,Su YL,et al. SUMO protease SENP1 deSUMOylates and stabilizes c-myc[J]. Proc Natl Acad Sci U S A,2018,115(43):10983-10988. [百度学术]
Han SJ,Shin H,Oh JW,et al. The protein neddylation inhibitor MLN4924 suppresses patient-derived glioblastoma cells via inhibition of ERK and AKT signaling[J]. Cancers,2019,11(12):1849. [百度学术]
Xie P,Peng ZQ,Chen YJ,et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development[J]. Cell Res,2021,31(3):291-311. [百度学术]
Sharma P,Kuehn MR. SENP1-modulated sumoylation regulates retinoblastoma protein (RB) and Lamin A/C interaction and stabilization[J]. Oncogene,2016,35(50):6429-6438. [百度学术]
Barbier-Torres L,Delgado TC,García-Rodríguez JL,et al. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer[J]. Oncotarget,2015,6(4):2509-2523. [百度学术]
Lee JS,Chu IS,Heo J,et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling[J]. Hepatology,2004,40(3):667-676. [百度学术]
Kukkula A,Ojala VK,Mendez LM,et al. Therapeutic potential of targeting the SUMO pathway in cancer[J]. Cancers,2021,13(17):4402. [百度学术]
Wiechmann S,Gärtner A,Kniss A,et al. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation[J]. J Biol Chem,2017,292(37):15340-15351. [百度学术]
Yu Q,Jiang YH,Sun Y. Anticancer drug discovery by targeting cullin neddylation[J]. Acta Pharm Sin B,2020,10(5):746-765. [百度学术]
da Silva SR,Paiva SL,Lukkarila JL,et al. Exploring a new frontier in cancer treatment:targeting the ubiquitin and ubiquitin-like activating enzymes[J]. J Med Chem,2013,56(6):2165-2177. [百度学术]
Zhou LS,Jiang YY,Luo Q,et al. Neddylation:a novel modulator of the tumor microenvironment[J]. Mol Cancer,2019,18(1):77. [百度学术]
Shi C,Wang Y,Guo YN,et al. Cooperative down-regulation of ribosomal protein L10 and NF-κB signaling pathway is responsible for the anti-proliferative effects by DMAPT in pancreatic cancer cells[J]. Oncotarget,2017,8(21):35009-35018. [百度学术]
Fan JB,Arimoto KL,Motamedchaboki K,et al. Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis[J]. Sci Rep,2015,5:12704. [百度学术]
Carter SA,Vousden KH. p53-ubl fusions as models of ubiquitination,sumoylation and neddylation of p53[J]. Cell Cycle,2008,7(16):2519-2528. [百度学术]
El-Asmi F,McManus FP,Brantis-de-Carvalho CE,et al. Cross-talk between SUMOylation and ISGylation in response to interferon[J]. Cytokine,2020,129:155025. [百度学术]