摘要
近年来,关于含硼药物,尤其是硼酸类药物的研究逐渐增多。含硼药物代表了药物化学家在研发领域开拓的一类新成果,这类药物在抗炎、抗菌、抗肿瘤等方面正扮演着愈发重要的角色。目前,全球已有5个含硼药物获批上市,正处于临床试验阶段的含硼药物也不在少数,同时近几年在研新药的不断出现,极大地扩展了硼在药物研发领域的应用。本文通过介绍硼元素的特性,并对处于各个研究阶段的代表性含硼药物的适应证,与靶点的结合机制,以及它们进入临床试验后的进展进行综述,以期为含硼药物的进一步研究提供参考。
近年来,在药物研发领域,经过科学家们对含硼化合物的不断探索,基于硼元素设计的药物体现出了令人期待的治疗潜力。到目前为止,已有5种含硼药物经美国食品和药品监督管理局批准上市,进入临床试验的也不在少数,同时,近年来还有新的含硼化合物被发现具有研发价值,为该领域带来了新的成果,拓宽了前景。本文将对这些含硼药物的适应证和靶点结合机制,以及代表性药物在临床试验阶段的研究进展进行概述与总结。
在新药研发中,研究人员对含硼化合物的研究和开发兴趣日益增加,其中的一个关键原因可能是硼元素独特的性质。硼的原子序数为5,硼原子的价电子结构式为2

图1 硼酸从s
随着首个含硼药物硼替佐米的批准,研究人员陆续研发出新颖的含硼药物,目前全球已有5种含硼药物获批上市(见
药物名称 | 研发公司/机构 | 适应证 | 作用靶点 | 生物活性 |
---|---|---|---|---|
硼替佐米 | 千禧制药 | 多发性骨髓瘤 | 20S蛋白酶体 | IC50 = 2.5 nmol/L |
伊沙佐米 | 千禧制药 | 多发性骨髓瘤 | 20S蛋白酶体 | IC50 = 3.4 nmol/L |
他伐硼罗 | 安纳考尔制药 | 脚趾甲真菌病 | 亮氨酰-tRNA合成酶 | IC50 = 2.1 μmol/L |
克立硼罗 | 安纳考尔制药 | 轻度至中度特应性皮炎 | 磷酸二酯酶4 | IC50 = 0.49 μmol/L |
法硼巴坦 | Rempex制药 | 复杂尿路感染 | β-内酰胺酶 | MIC50≤ 0.06 mg/L |

图2 已上市的含硼药物
2005年,千禧(Millennium)制药公司研发的硼替佐米(bortezomib,1)获得FDA批准,成为首个获得批准上市的含硼类药
在硼替佐米之前,研究者们起初开发了醛基多肽类蛋白酶体抑制剂,然而由于其选择性不高,生物利用度较低等缺陷,研究者们对其进行药效团替换,当原化合物中的醛基这一亲电性基团由硼酸基团替换后(

图3 硼酸基替换醛基后的蛋白酶抑制剂的活性变化
关于硼替佐米的作用机制,最主要的是泛素-蛋白酶体途

图4 硼替佐米(棕色)与20S蛋白酶体(蓝色)的结合模式(PDB:5LF3)
在临床前的体外细胞试验中,研究者们证明硼替佐米以剂量依赖的方式对患者的多发性骨髓瘤细胞产生抑制,IC50最低为2.5 nmol/
伊沙佐米(ixazomib,2)是第二代蛋白酶体抑制剂,由千禧制药公司公司开发,2015年首次获得批准,可与来那度胺和地塞米松联用于先前至少接受过一种治疗的多发性骨髓瘤患
给药方式上,伊沙佐米是首个口服蛋白酶体抑制剂,每周用药1次,减轻了患者依从

图5 伊沙佐米(棕色)与20S蛋白酶体(蓝色)的结合模式(PDB:5LF7)
目前,伊沙佐米正在进行进一步的Ⅲ期临床试验,其中包括用于治疗多发性骨髓瘤,以及用于治疗其他血液系统恶性肿瘤(如淋巴瘤和淀粉样变性)以及实体瘤的临床试验。在这些针对复发/难治患者、新诊断的患者和维持疗法的Ⅲ期试验中,伊沙佐米正在作为单一药物或与其他疗法联合进行评
他伐硼罗(tavaborole,3)是安纳考尔(Anacor)制药公司开发的一种新型抗真菌药物,该药于2014年获得FDA批准上

图6 他伐硼罗(棕色)与亮氨酸特异性tRNA(蓝色)的结合模式(PDB:2V0C)
在临床研究中,他伐硼罗显示出良好的指甲穿透性质和疗效。在Ⅰ/Ⅱ期临床试验中,15名甲真菌病患者接受了7.5%的他伐硼罗治疗,结果表明,他伐硼罗能有效穿透指甲,治疗水平的他伐硼罗在最后一次给药后效果至少持续3个月。另外,在3个独立的Ⅱ期剂量范围研究中,5%的给药浓度被认为是进一步研究的最佳浓
克立硼罗(crisaborole,4)由安纳考尔制药开发,是一种非甾体类选择性PDE4抑制剂,药用剂型为2%的外用软膏,该药于2016年获得FDA批准,用于治疗轻度至中度特应性皮
环磷酸腺苷(cAMP)相关的信号级联在调节免疫功能中起着关键的作
此外,独特的硼唑结构使得克立硼罗具备合理的理化性质,更易穿透表皮和真皮到达炎症部位。并且,克立硼罗独特的局部配方允许其在炎症和快速新陈代谢部位进行靶向抑制,之后可以快速代谢成无活性化合物进行排泄,从而避免全身暴露和潜在的非目标副作
4项Ⅰ期和Ⅱ期研究分析了儿童和成人使用克立硼罗的药代动力学、疗效和安全性,结果显示,2%的克立硼罗外用软膏显示出良好的耐受性,包括在最大剂量条件下,表现出有限的全身性暴
美罗培南-法硼巴坦(meropenem-vaborbactam)是2017年FDA批准的组合药物,用于治疗复杂尿路感

图7 法硼巴坦(棕色)与KPC(蓝色)的结合模式(PDB:4XUZ)
(KPC:Klebsiella Pneumoniae Carbapenem,克雷伯菌中产生的碳青霉烯酶)
在临床前实验中,这种组合药物对耐药的革兰氏阴性菌,特别是产生碳青霉烯酶的肺炎克雷伯氏菌显示出较强的抗菌活性(MIC50 ≤ 0.06 mg/L
度格列汀(dutogliptin,6)是由菲诺米克斯(Phenomix)公司、森林实验室公司(Forest Laboratory)和意大利凯西制药公司(Chiesi FarmPharmtici spa)联合开发的一种口服的选择性二肽基肽酶-4(dipeptidyl peptidase-IV,DPP-IV)抑制剂,对DPP-Ⅳ的抑制活性为IC50 = 25 nmol/
在一项多中心、随机、双盲、安慰剂对照的研究中,研究者对度格列汀的药代动力学和药效进行了实验和评价,接受格列酮或二甲双胍背景疗法的2型糖尿病患者,每天口服一次度格列汀,在3种不同剂量(100、200或400 mg)水平下,持续4周后,患者均表现出良好的耐受性,并且血糖控制得到了明显改
被忽视疾病药物研发组织(DNDi)开发的阿考硼罗(acoziborole,7)是一种抗寄生虫药物,用于治疗人类非洲锥虫病(HAT
葛兰素史克(GlaxoSmithKline)公司研发的GSK3036656(8
与已经批准的克立硼罗类似,辉瑞(Pfizer)公司开发的AN2898(9)是另一种用于治疗特应性皮炎的磷酸二酯酶4(PDE4)抑制剂,具有竞争性抑制、可逆性结合的特点;通过抑制肿瘤坏死因子α(TNF-α)、白细胞介素IL-12、IL-23等相关细胞因子的释放达到治疗特应性皮炎和银屑病的效
关于AN2898的临床试验正在进行中,在一项多中心、随机、双盲、对照、双侧对照的Ⅱ期研究中(NCT01301508),特应性皮炎患者接受AN2898软膏(1%)治疗,持续6周,试验终点表明,AN2898软膏(1%)在降低特应性皮炎病变的严重程度和症状方面具有较好的效果,且安全性和耐受性良
他尼硼巴坦(taniborbactam,10)是一种含硼的全谱β-内酰胺酶抑制剂,具有可逆性、选择性抑制的特点。维纳托克斯(venatorx)制药公司的研发人员经筛选得到含硼先导化合物,基于结构进行药物设计,并对构效关系研究后,发现了该化合物,其结构可通过与羟基和锌离子结合模拟酶水解时的过渡态,对丝氨酸类β-内酰胺酶(SBLs)和金属类β-内酰胺酶(MBLs)产生抑制。从晶体结构中可以观察

图8 A:他尼硼巴坦(棕色)与金属β-内酰胺酶NDM-1(蓝色)的结合模式(PDB:6RMF);B:他尼硼巴坦与丝氨酸β-内酰胺酶OXA-10的结合模式(PDB:6RTN)
结构序号 | 名称/编号 | 研发公司/机构 | 适应证 | 作用靶点 | 生物活性 | 研究阶段 |
---|---|---|---|---|---|---|
6 | 度格列汀 | 菲诺米克斯制药 | 2型糖尿病 | 二肽基肽酶-4 | IC50 = 25 nmol/L | Ⅱ期 |
7 | 阿考硼罗 | 被忽视疾病药物研发组织 | 人类非洲锥虫病 | 尚未得知 | MIC = 0.6 μg/ml | Ⅲ期 |
8 | GSK3036656 | 葛兰素史克 | 结核病 | 亮氨酰-tRNA合成酶 | IC50 = 0.2 μmol/L | Ⅱ期 |
9 | AN2898 | 辉瑞 | 特应性皮炎/银屑病 | 磷酸二酯酶4 | IC50 = 60 nmol/L | Ⅱ期 |
10 | 他尼硼巴坦 | 维纳托克斯制药 | 多重耐药感染 | 丝氨酸和金属β-内酰胺酶 |
KPC-2 IC50 = 30 nmol/L AmpC IC50 = 32 nmol/L OXA-48 IC50 = 42 nmol/L VIM-2 IC50 = 20 nmol/L | Ⅲ期 |
11 | GSK8175 | 葛兰素史克 | 丙型肝炎 | HCV复制子GT 1a | EC50 = 32 nmol/Lol/L | Ⅱ期 |
12 | QPX7728 | 启普生物制药 | 多重耐药感染 | 丝氨酸和金属β-内酰胺酶 |
KPC-2 IC50 = 2.9 nmol/L P99 IC50 = 22 nmol/L OXA-48 IC50 = 1.1 nmol/L VIM-1 IC50 = 14 nmol/L | Ⅰ期 |
13 | 他波司他 | Point 制药 | 抗肿瘤 | 二肽基肽酶 | IC50<4 nmol/L | Ⅱ期 |
14 | PF-07038124 | 辉瑞 | 特应性皮炎 | 磷酸二酯酶4 | IC50 = 0.5 nmol/L | Ⅱb期 |
15 | M3258 | 默克雪兰诺 | 多发性骨髓瘤 | 蛋白酶体LMP7亚基 | IC50 = 3.6 nmol/L | Ⅰ期 |
目前,一项评估他尼硼巴坦联合头孢吡肟治疗尿路感染的疗效、安全性和耐受性的Ⅲ期临床试验按计划已于2021年底完成(NCT03840148
GSK8175(11)属于第二代针对丙型肝炎病毒(HCV)的RNA聚合酶抑制剂,主要针对丙型肝炎病毒(HCV)的RNA聚合酶发挥抗病毒作用。葛兰素史克公司的研发人员对一种血浆半衰期较短的临床候选药GSK5852的代谢性质进行优化,最终发现了GSK8175。X射线衍射数据显示其结构中的关键药效团N-苯基硼酸在高度有序的水分子介导产生的氢键相互作用下,与HCV的NS5B蛋白(如GT1a 316Y蛋白)发生结合,对基因型1a(GT1a)的复制子可以产生有效抑制(EC50 = 32 nmol/L)。临床前的研究显示经过几轮结构修饰后,体外和细胞分析证实了GSK8175的有效活性,体内研究显示其在大鼠体内的低清除率证实了其优越的药代动力学特
启普生物制药(Qpex Biopharma)公司开发的QPX7728(12)是一种超广谱β-内酰胺酶抑制剂,可以与β-内酰胺类抗生素结合使用来治疗耐多药的革兰氏阴性细菌感染。该药由研发人员通过对含双环硼酸的先导化合物进行修饰后,逐步获得抗菌谱后最终得到。QPX7728对绝大多数β-内酰胺酶表现出广泛的抑制活性(
在一项多药联用试验中,QPX7728与美罗培南、头孢吡肟或头孢噻嗪联用后,对临床分离的铜绿假单胞菌产生了高度有效的抑制活
除了以上代表性的7种,近几年还有几种含硼药物进入了临床试验阶段,包括针对DPP-IV靶点的他波司他(13,IC50 < 4 nmol/L

图9 进入临床试验阶段的含硼药物
除了已上市和临床研究中的含硼药物之外,近年来不断有新的含硼化合物在相关研究中被发现,它们目前尚处于临床前阶段或生物活性评价阶段其中包括国内的科研人员在药物研发方面取得的令人惊喜的成果。
Zhang
Tan
结构式序号 | 研发公司/机构 | 作用对象 | 生物活性 | 产生效应 |
---|---|---|---|---|
16-17 | 上海交通大学 | SKOV3细胞 |
16, IC50 = 33 nmol/L 17, IC50 = 21 nmol/L | 具有抑制卵巢癌的良好活性 |
18 | 华西药学院 | MBL/SBL酶 |
VIM-2 IC50 = 0.44 μmol/L KPC-2 IC50 = 0.61 μmol/L GOB-18 IC50 = 0.13 μmol/L AmpC IC50 = 0.11 μmol/L | 对抗细菌对抗生素的耐药作用 |
19 | 四川大学 | SaClpP | IC50 = 0.9 μmol/L | 抗菌 |
20 | 安纳考尔制药 | 恶性疟原虫 |
P.f. W2 strain IC50 = 33 nmol/L P.f. 3D7 strain IC50 = 43 nmol/L | 抗疟疾 |
21-23 | 多伦多大学 |
hClpP hClpXP |
hClpP 21, IC50 = 10.2 ± 3.7 μmol/L 22, IC50 = 8.4 ± 2.6 μmol/L 23, IC50 = 12.4 ± 0.1 μmol/L hClpXP 21, IC50 = 0.8 ± 0.3 μmol/L 22, IC50 = 0.9 ± 0.4 μmol/L 23, IC50 = 1.0 ± 0.3 μmol/L | 发生错误折叠蛋白质的降解 |
24 | 葛兰素史克 | ATX | IC50 = 0.03 μmol/L | 调节LPA的表达 |
25 | 被忽视疾病药物研发组织 | CPSF3核酸内切酶 | EC50 = 1.8 μmol/L | 抗利什曼原虫活性 |

图10 近几年新发现的含硼药物
硼原子在化合物结构中的出现增加了药物分子的多样性。硼原子含有一个空轨道,具有路易斯酸性,可与路易斯碱形成络合物,同时,硼表现出的亲电性使其可与亲核基团包括酶残基中常见的羟基,氨基等氨基酸基团形成共价键。因此,药物在引入硼原子后可通过形成可逆的共价键与生物靶标结合,这一作用比多数药物典型的非共价、疏水相互作用具有更大的稳定性,提供了额外的亲和力,一定程度上增强了药物对靶标的生物活性。但结构中含有硼酸的药物稳定性较差,可能会在与靶标结合之前被降解。另外,含硼药物进入体内以后,也可能表现出与其他内源性亲核靶标的非特异性反应,如与丝氨酸、赖氨酸等氨基酸残基形成较强的作用力,产生脱靶效应,导致药物的不良反应。因此,这需要研发者在开发过程中对硼进行结构形式上的优化,如改造为硼酸酯和含硼杂环等;以及开发出使药物特异性靶向的策略等。
在硼替佐米获得批准上市之后,新的含硼化合物被不断设计并用于药物开发中,为药物研发提供了新途径。针对不同靶点,具有不同适应证的含硼药物不断被研发人员发现,并以良好的活性和成药性被应用到进一步的临床研究中。当然,该类药物被发现具有活性的同时,其作用方式和特性等还需继续探索,比如一类苯并硼唑类化合物具有抗疟疾作用,但其作用靶点与机制目前仍需寻找并阐明。
含硼类药物在新药开发中具有广阔的前景,研究者们对这类药物的研究也在不断深入,我们相信,随着新化合物结构的出现以及更多靶点和作用机制的阐明,未来将会有更多安全高效的含硼药物进入临床治疗的领域中。
References
Wiskur SL, Lavigne JJ, Ait-Haddou H, et al. pKa values and geometries of secondary and tertiary amines complexed to boronic acids implications for sensor design[J]. Org Lett, 2001, 3(9): 1311-1314. [百度学术]
Springsteen G, Wang BH. A detailed examination of boronic acid-diol complexation[J]. Tetrahedron, 2002, 58(26): 5291-5300. [百度学术]
Paramore A, Frantz S. Bortezomib[J]. Nat Rev Drug Discov 2,003, 2(8): 611-612. [百度学术]
Chen D, Frezza M, Schmitt S, et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives[J]. Curr Cancer Drug Targets, 2011, 11(3): 239-253. [百度学术]
Adams J, Behnke M, Chen SW, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids[J]. Bioorg Med Chem Lett, 1998, 8(4): 333-338. [百度学术]
Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates[J]. Chem Biol, 2001, 8(8): 739-758. [百度学术]
Groll M, Berkers CR, Ploegh HL, et al. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome[J]. Structure, 2006, 14(3): 451-456. [百度学术]
Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents[J]. Cancer Res, 1999, 59(11):2615-2622. [百度学术]
Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells[J]. Cancer Res, 2001, 61(7): 3071-3076. [百度学术]
Shirley M. Ixazomib: first global approval[J]. Drugs, 2016, 76(3): 405-411. [百度学术]
Kupperman E, Lee EC, Cao YY, et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer[J]. Cancer Res, 2010, 70(5): 1970-1980. [百度学术]
Muz B, Ghazarian RN, Ou M, et al. Spotlight on ixazomib: potential in the treatment of multiple myeloma[J]. Drug Des Devel Ther, 2016, 10: 217-226. [百度学术]
Chauhan D, Tian Z, Zhou B, et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells[J]. Clin Cancer Res, 2011, 17(16): 5311-5321. [百度学术]
Markham A. Tavaborole: first global approval[J]. Drugs, 2014, 74(13): 1555-1558. [百度学术]
Jinna S, Finch J. Spotlight on tavaborole for the treatment of onychomycosis[J]. Drug Des Devel Ther, 2015, 9: 6185-6190. [百度学术]
Rock FL, Mao WM, Yaremchuk A, et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site[J]. Science, 2007, 316(5832): 1759-1761. [百度学术]
Baker SJ, Zhang YK, Akama T, et al. Discovery of a new boron-containing antifungal agent, 5-fluoro-1, 3-dihydro-1-hydroxy-2, 1-benzoxaborole (AN2690), for the potential treatment of onychomycosis[J]. J Med Chem, 2006, 49(15):4447-4450. [百度学术]
Benkovic SJ, Baker SJ, Alley MRK, et al. Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH[J]. J Med Chem, 2005, 48(23):7468-7476. [百度学术]
Markinson B, Ghannoum M, Winter T, et al. Examining the benefits of the boron-based mechanism of action and physicochemical properties of tavaborole in the treatment of onychomycosis[J]. J Am Podiatr Med Assoc, 2018, 108(1):12-19. [百度学术]
Elewski BE, Aly R, Baldwin SL, et al. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-based antifungal agent, for the treatment of toenail onychomycosis: results from 2 randomized phase-III studies[J]. J Am Acad Dermatol, 2015, 73(1): 62-69. [百度学术]
Milakovic M, Gooderham MJ. Phosphodiesterase-4 inhibition in psoriasis[J]. Psoriasis (Auckl), 2021, 11: 21-29. [百度学术]
Tulsian NK, Krishnamurthy S, Anand GS. Channeling of cAMP in PDE-PKA complexes promotes signal adaptation[J]. Biophys J, 2017, 112(12): 2552-2566. [百度学术]
Fleming YM, Frame MC, Houslay MD. PDE4-regulated cAMP degradation controls the assembly of integrin-dependent actin adhesion structures and REF52 cell migration[J]. J Cell Sci, 2004, 117(Pt 11): 2377-2388. [百度学术]
Grewe SR, Chan SC, Hanifin JM. Elevated leukocyte cyclic AMP—phosphodiesterase in atopic disease: a possible mechanism for cyclic AMP—agonist hyporesponsiveness[J]. J Allergy Clin Immunol, 1982, 70(6): 452-457. [百度学术]
Zane LT, Chanda S, Jarnagin K, et al. Crisaborole and its potential role in treating atopic dermatitis: overview of early clinical studies[J]. Immunotherapy, 2016, 8(8): 853-866. [百度学术]
Hanifin JM, Chan SC, Cheng JB, et al. Type 4 phosphodiesterase inhibitors have clinical and in vitro anti-inflammatory effects in atopic dermatitis[J]. J Investig Dermatol, 1996, 107(1): 51-56. [百度学术]
Akama T, Baker SJ, Zhang YK, et al. Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis[J]. Bioorg Med Chem Lett, 2009, 19(8): 2129-2132. [百度学术]
Jarnagin K, Chanda S, Coronado D, et al. Crisaborole topical ointment, 2%: a nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 inhibitor in clinical development for the treatment of atopic dermatitis[J]. J Drugs Dermatol, 2016, 15(4): 390-396. [百度学术]
Zane LT, Kircik L, Call R, et al. Crisaborole topical ointment, 2% in patients ages 2 to 17 years with atopic dermatitis: a phase 1b, open-label, maximal-use systemic exposure study[J]. Pediatr Dermatol, 2016, 33(4): 380-387. [百度学术]
Murrell DF, Gebauer K, Spelman L, et al. Crisaborole topical ointment, 2% in adults with atopic dermatitis: a phase 2a, vehicle-controlled, proof-of-concept study[J]. J Drugs Dermatol, 2015, 14(10): 1108-1112. [百度学术]
Tom WL, Van Syoc M, Chanda S, et al. Pharmacokinetic profile, safety, and tolerability of crisaborole topical ointment, 2% in adolescents with atopic dermatitis: an open-label phase 2a study[J]. Pediatr Dermatol, 2016, 33(2): 150-159. [百度学术]
Stein Gold LF, Spelman L, Spellman MC, et al. A phase 2, randomized, controlled, dose-ranging study evaluating crisaborole topical ointment, 0.5% and 2% in adolescents with mild to moderate atopic dermatitis[J]. J Drugs Dermatol, 2015, 14(12):1394-1399. [百度学术]
Geng B, Hebert AA, Takiya L, et al. Efficacy and safety trends with continuous, long-term crisaborole use in patients Aged ≥ 2 years with mild-to-moderate atopic dermatitis[J]. Dermatol Ther (Heidelb), 2021, 11(5): 1667-1678. [百度学术]
Andrei S, Valeanu L, Chirvasuta R, et al. New FDA approved antibacterial drugs: 2015-2017[J]. Discoveries (Craiova), 2018, 6(1): e81. [百度学术]
Lee YM, Kim J, Trinh S. Meropenem-vaborbactam (vabomer
Zhou JY, Stapleton P, Haider S, et al. Boronic acid inhibitors of the class A β-lactamase KPC-2[J]. Bioorg Med Chem, 2018, 26(11): 2921-2927. [百度学术]
Hecker SJ, Reddy KR, Totrov M, et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases[J]. J Med Chem, 2015, 58(9): 3682-3692. [百度学术]
Lomovskaya O, Sun DX, Rubio-Aparicio D, et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae[J]. Antimicrob Agents Chemother, 2017, 61(11): e01443-e01417. [百度学术]
Baldwin CM, Lyseng-Williamson KA, Keam SJ. Meropenem: a review of its use in the treatment of serious bacterial infections[J]. Drugs, 2008, 68(6): 803-838. [百度学术]
Wenzler E, Scoble PJ. An appraisal of the pharmacokinetic and pharmacodynamic properties of meropenem-vaborbactam[J]. Infect Dis Ther, 2020, 9(4): 769-784. [百度学术]
Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial[J]. JAMA, 2018, 319(8): 788-799. [百度学术]
O'Farrell AM, van Vliet A, Abou Farha K, et al. Pharmacokinetic and pharmacodynamic assessments of the dipeptidyl peptidase-4 inhibitor PHX1149: double-blind, placebo-controlled, single- and multiple-dose studies in healthy subjects[J]. Clin Ther, 2007, 29(8): 1692-1705. [百度学术]
Johnson KMS. Dutogliptin, a dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes mellitus[J]. Curr Opin Investig Drugs, 2010, 11(4):455-463. [百度学术]
Gupta R, Walunj SS, Tokala RK, et al. Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of type 2 diabetes[J]. Curr Drug Targets, 2009, 10(1): 71-87. [百度学术]
Garcia-Soria G, Gonzalez-Galvez G, Argoud GM, et al. The dipeptidyl peptidase-4 inhibitor PHX1149 improves blood glucose control in patients with type 2 diabetes mellitus[J]. Diabetes Obes Metab, 2008, 10(4): 293-300. [百度学术]
von Lewinski D, Selvanayagam JB, Schatz RA, et al. "Protocol for a phase 2, randomized, double-blind, placebo-controlled, safety and efficacy study of dutogliptin in combination with filgrastim in early recovery post-myocardial infarction": study protocol for a randomized controlled trial[J]. Trials, 2020, 21(1): 744. [百度学术]
Baker CH, Welburn SC. The long wait for a new drug for human African trypanosomiasis[J]. Trends Parasitol, 2018, 34(10): 818-827. [百度学术]
Jacobs RT, Nare B, Wring SA, et al. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis[J]. PLoS Negl Trop Dis, 2011, 5(6): e1151. [百度学术]
Wall RJ, Rico E, Lukac l, et al. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3[J]. Proc Natl Acad Sci U S A, 2018, 115(38): 9616-9621. [百度学术]
U. S. National Library of Meidcine. Safety and tolerability study of acoziborole in g-HAT seropositive subjects (OXA004). (2022-01-25)[2022-09-28]https://www.clinicaltrials.gov/ct2/show/NCT05256017. [百度学术]
Li XF, Hernandez V, Rock FL, et al. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (S)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy) benzo[c][1,2] oxaborol-1(3H)-ol (GSK656)[J]. J Med Chem, 2017, 60(19): 8011-8026. [百度学术]
Wei YY, Yang F, Tang J, et al. Advances in the research of anti-tuberculosis drugs[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(2): 231-239. [百度学术]
Tenero D, Derimanov G, Carlton A, et al. First-time-in-human study and prediction of early bactericidal activity for GSK3036656, a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment[J]. Antimicrob Agents Chemother, 2019, 63(8):e00240-e00219. [百度学术]
U. S. National Library of Meidcine. An early bactericidal activity, safety and tolerability of GSK3036656 in subjects with drug-sensitive pulmonary tuberculosis[EB/OL]. (2018-06-15)[2022-01-03]. https://www.clinicaltrials.gov/ct2/show/NCT03557281. [百度学术]
Arama T, Plattner J, Kimura R, et al. Structure-activity studies led to the discovery of AN2898 in development for topical treatment of psoriasis and atopic dermatitis[J]. J Am Acad Dermatol, 2009, 60(3): AB71. [百度学术]
Xiao YC, Yu JL, Dai QQ, et al. Targeting metalloenzymes by boron-containing metal-binding pharmacophores[J]. J Med Chem, 2021, 64(24): 17706-17727. [百度学术]
Lee ZE, Gogoleva T, Heerinckx F, et al. AN2728 and AN2898 ointments demonstrate safety and efficacy in a bilateral study of atopic dermatitis[J]. J Dermatol Sci, 2013, 69(2): e34. [百度学术]
Krajnc A, Brem J, Hinchliffe P, et al. Bicyclic boronate VNRX-5133 inhibits metallo- and serine-β-lactamases[J]. J Med Chem, 2019, 62(18): 8544-8556. [百度学术]
Liu B, Trout REL, Chu GH, et al. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections[J]. J Med Chem, 2020, 63(6): 2789-2801. [百度学术]
Dowell JA, Dickerson D, Henkel T. Safety and pharmacokinetics in human volunteers of taniborbactam (VNRX-5133), a novel intravenous β-lactamase inhibitor[J]. Antimicrob Agents Chemother, 2021, 65(11): e0105321. [百度学术]
U. S. National Library of Meidcine. Safety and efficacy study of cefepime/VNRX-5133 in patients with complicated urinary tract infections (CERTAIN-1)[EB/OL]. (2019-01-15)[2021-12-23]. https://www.clinicaltrials.gov/ct2/show/NCT03840148. [百度学术]
Chong PY, Shotwell JB, Miller J, et al. Design of n-benzoxaborole benzofuran GSK8175-optimization of human pharmacokinetics inspired by metabolites of a failed clinical HCV inhibitor[J]. J Med Chem, 2019, 62(7): 3254-3267. [百度学术]
Deng YL, Campbell F, Han KL, et al. Randomized clinical trials towards a single-visit cure for chronic hepatitis C: oral GSK2878175 and injectable RG-101 in chronic hepatitis C patients and long-acting injectable GSK2878175 in healthy participants[J]. J Viral Hepat, 2020, 27(7): 699-708. [百度学术]
Tsivkovski R, Totrov M, Lomovskaya O. Biochemical characterization of QPX7728, a new ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases[J]. Antimicrob Agents Chemother, 2020, 64(6): e00130-e00120. [百度学术]
Hecker SJ, Reddy KR, Lomovskaya O, et al. Discovery of cyclic boronic acid QPX7728, an ultrabroad-spectrum inhibitor of serine and metallo-β-lactamases[J]. J Med Chem, 2020, 63(14): 7491-7507. [百度学术]
Lomovskaya O, Rubio-Aparicio D, Nelson K, et al. In vitro activity of the ultrabroad-spectrum beta-lactamase inhibitor QPX7728 in combination with multiple beta-lactam antibiotics against Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2021, 65(6): e00210-e00221. [百度学术]
U. S. National Library of Meidcine. P1 Single and multiple ascending dose (SAD/MAD) study of IV QPX7728 alone and combined with QPX2014 in NHV [EB/OL]. (2020-05-08)[2022-10-10] https://www.clinicaltrials.gov/ct2/show/NCT04380207. [百度学术]
Adams S, Miller GT, Jesson MI, et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism[J]. Cancer Res, 2004, 64(15): 5471-5480. [百度学术]
Lankas GR, Leiting B, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9[J]. Diabetes, 2005, 54(10): 2988-2994. [百度学术]
Strohbach JW, Akama T, Blakemore DC, et al. Boron containing PDE4 inhibitors: US20200108083[P]. 2020-04-09. [百度学术]
Klein M, Busch M, Friese-Hamim M, et al. Structure-based optimization and discovery of M3258, a specific inhibitor of the immunoproteasome subunit LMP7 (β5i)[J]. J Med Chem, 2021, 64(14): 10230-10245. [百度学术]
Zhang J, Zhang JY, Hao GY, et al. Design, synthesis, and structure-activity relationship of 7-propanamide benzoxaboroles as potent anticancer agents[J]. J Med Chem, 2019, 62(14): 6765-6784. [百度学术]
Wang YL, Liu S, Yu ZJ, et al. Structure-based development of (1-(3'-mercaptopropanamido) methyl) boronic acid derived broad-spectrum, dual-action inhibitors of metallo- and serine-β-lactamases[J]. J Med Chem, 2019, 62(15): 7160-7184. [百度学术]
Ju Y, He LH, Zhou YZ, et al. Discovery of novel peptidomimetic boronate ClpP inhibitors with noncanonical enzyme mechanism as potent virulence blockers in vitro and in vivo[J]. J Med Chem, 2020, 63(6): 3104-3119. [百度学术]
Zhang YK, Plattner JJ, Easom EE, et al. Benzoxaborole antimalarial agents. part 5. lead optimization of novel amide pyrazinyloxy benzoxaboroles and identification of a preclinical candidate[J]. J Med Chem, 2017, 60(13): 5889-5908. [百度学术]
Tan J, Grouleff JJ, Jitkova Y, et al. De novo design of boron-based peptidomimetics as potent inhibitors of human ClpP in the presence of human ClpX[J]. J Med Chem, 2019, 62(13): 6377-6390. [百度学术]
Clark JM, Salgado-Polo F, MacDonald SJF, et al. Structure-based design of a novel class of autotaxin inhibitors based on endogenous allosteric modulators[J]. J Med Chem, 2022, 65(8): 6338-6351. [百度学术]
Mowbray CE, Braillard S, Glossop PA, et al. DNDI-6148: a novel benzoxaborole preclinical candidate for the treatment of visceral leishmaniasis[J]. J Med Chem, 2021, 64(21): 16159-16176. [百度学术]