摘要
多数药物味道苦涩、口感刺激,导致患者顺应性差,其不良气味严重影响药物治疗效率。一款药物的成功研发不仅应满足有效性、稳定性、安全性、均一性、经济性的五大质量特征,同时患者对不良气味药物的顺应性也不容忽视。味觉掩蔽技术针对不同性质药物进行掩味,其发展对改善药物口感具有重要意义。本文综述了传统掩味技术的原理及优缺点,并介绍了新型掩味技术如熔融制粒、热熔挤出、3D打印、药物复合物制备、苦味抑制剂的掩味机制和适用范围。针对药物掩味效果阐述体外评测方法如功能性磁共振成像、体外溶出、味觉指纹分析技术以及体内评测手段如动物、人体口尝在掩味效果领域的应用,并提出BP神经网络评价预测模型对药物口感评测的新策略,以期为今后药物掩味研究提供理论参考。
人体约有1万个味蕾,其对苦味的感受过程是由苦味化合物刺激味觉细胞后产生神经冲动,信号从神经元传递至孤束核并激活其感味区域,最终传达至大脑味觉皮层使人感知苦味。迄今已发现人体口腔内具有约25种苦味受体(type 2 bitter taste receptor, TAS2Rs
传统掩味技术如使用聚合物对药物包衣;将药物制备成微囊、微球、脂质体;制备离子交换树脂复合物;制备环糊精包合物;添加矫味剂(甜味剂、芳香剂、泡腾剂、胶浆剂等)等。
技术名称 | 掩味原理 | 优 点 | 缺 点 |
---|---|---|---|
聚合物包衣掩味 | 通过形成物理屏障阻隔或减少药物释放 | 可减少药物配伍禁忌的问题,具有增加药物稳定性,掩味,防潮,避光等优势 | 生产周期长、工艺过程需经历长时间湿热,不适用于强挥发性及湿热敏感的药物,参数控制复杂,劳动强度大 |
微球、微囊掩味 |
通过形成物理屏障阻隔或减少药物释放,可掩蔽其不良口感并减少药物对呼吸道,口腔黏膜和胃黏膜的刺 | 液体药物可制成固体剂型,也可制成缓控释制剂、掩盖不良气味,利于吞服、改善消化道副反应,降低药物刺激性、减少药物配伍禁忌、可使药物在靶位发挥作用、改善药物的可压性与流动性 | 操作方法不够连续,不利于联动化生产,工艺存在物料损失、对微球粒径控制较差、生产效率不高、包封率较低或者重复性较低等 |
脂质体掩味 | 脂质体为磷脂双分子层组成的空心囊状结构,药物包埋入磷脂双分子层后,从而与味蕾隔绝达到掩味效果 | 制备简易,辅料种类及用量少,成本低,生物相容性好,不引起免疫反应,亲水性、疏水性药物均可包埋 |
磷脂结构相对不稳定;对药物粒径有一定要求;大规模生产存在体系分散性的问 |
离子交换树脂掩味 | 药物与带相反电荷的树脂形成复合物,该复合物在唾液pH下不易解离,可阻断药物与味蕾的接触 | 具有良好的缓控释及掩味效果,无毒性,不引发不良反应 | 物料成本较高,离子交换树脂水溶性差,可能影响颗粒口感 |
环糊精包合掩味 | 将药物包合于环糊精空腔内形成包合物,避免药物与味蕾直接接触 | 增溶、提高稳定性、防止挥发、掩味、提高生物利用度,降低药物刺激性、毒性及不良反应 | 载药量小,包合物材料有局限性,其中研磨法制备包合物收集困难、不适用于大批量生产 |
甜味剂掩味 | 通过增加神经元对甜的感应,降低大脑对苦味的敏感度 | 天然甜味剂或矫味剂的安全可靠,无须通过复杂制备掩味工序,成本低 | 适用于苦度较低的药物掩味,对极苦药物作用不大 |
芳香剂掩味 | 利用嗅味混淆大脑对苦的感知,改变制剂气味 | 从气味方面令患者顺应性增强,为其他掩味方法不具有的优势 | 成分复杂,大多具有挥发性物质,易产生化学反应 |
泡腾剂掩味 | 利用碳酸氢盐与有机酸产生的二氧化碳来麻痹味蕾达到掩味 | 服用方便、起效迅速,适用于儿童、老年人及吞服困难的患者 | 易氧化分解;储存条件严格,须防潮;生产工艺复杂,成本高,溶解后才可服用不得吞服 |
胶浆剂掩味 | 通过其黏稠缓和的性质控制药物扩散,干扰味觉细胞从而产生矫味作用 | 对刺激性较强的药物有良好的遮蔽性 | 干燥速度慢、防水性及防冻性较差 |
掩味技术 | 矫味辅料 | 研究结果 | 参考文献 |
---|---|---|---|
使用聚合物对对乙酰氨基酚颗粒进行包衣掩味 | 非pH依赖型的水不溶性乙基纤维素聚合物 | 颗粒可在低增重的情况下实现味觉掩蔽,同时也不会对溶出度产生很大影响 |
[ |
使用聚合物对对乙酰氨基酚和咖啡因两种苦味药物进行包衣掩味 |
pH依赖型Eudragit | 所得制剂前3 min内药物溶出明显减慢,防止药物与味觉受体接触,其崩解和药物释放没有明显减弱。该实验表明pH包衣膜可有效掩盖扑热息痛及咖啡因苦味,同时不影响药物释放和药效 |
[ |
分别制备悬浮液膜和脂质体膜对氯雷他定掩味 | 磷脂、胆固醇 | 苦味药物可被脂质体膜和悬浮液膜包裹。两种薄膜的溶出度均优于市售片剂。所制悬浮液膜的口服生物利用度显著高于市售片剂,脂质体膜对生物利用度有一定的提高,但低于悬浮液膜 |
[ |
采用喷雾干燥法制备卡维地洛快速溶片(RMTs) | 壳聚糖纳米颗粒 | 所制备的RMTs解决了药物不良味道及卡维地洛相关不良反应 |
[ |
通过空气冷却法、水冷法和柠檬酸溶液冷却法3种喷雾凝结工艺制备布洛芬脂质微球 | 十八醇、单硬脂酸甘油酯 | 制备工艺对药物释放和掩味效果有较大影响,在柠檬酸溶液中凝固的布洛芬微球掩味及释放效果最好,可达到掩味目的 |
[ |
使用离子交换树脂技术对卡托普利掩味 |
Dowe | 电子舌对药物苦味评价结果证明所制备的复合物能成功掩味 |
[ |
使用环糊精包合法制备苯甲酸利扎曲普坦口分散片,以掩盖其苦味 | 羟丙基-β-环糊精 | 与普通片剂相比,所得制剂口感得到良好改善,羟丙基-β-环糊精具有掩味和改善苯甲酸利扎曲普坦溶出度的能力 |
[ |
采用环糊精包合法掩盖他达拉非苦味 | β-环糊精 | 采用β-环糊精包合他达拉非后可成功掩盖其不良气味,但载药量小,该工艺仅适合制备小规格(5mg)口崩片 |
[ |
使用离子交换树脂技术对枸橼酸西地那掩味,采用粉末直接压片制备泡腾片 | 非波拉克林钾T134离子交换树脂;柠檬酸∶酒石酸∶碳酸氢钠(1∶2∶3.44)作为泡腾剂 | 加速稳定性实验显示处方稳定,以非波拉克林钾T134为掩味剂,其载药量和掩苦性最高,口感良好 |
[ |
与传统包衣掩味法相比,熔融制粒法不需要复杂的包衣过程即可以直接得到掩味颗粒。其掩味原理是将药物及低熔点辅料混合、搅拌、加热,辅料熔融软化覆盖于药物表面,物料粘连后形成颗粒,此时药物包封于颗粒内,因此降低了药物与味蕾的接触量,从而达到掩
热熔挤出技术(hot-melt extrusion, HME)的出现可以弥补传统熔融法制备固体分散体的不足,近年来有大量关于HME的文献报道,该技术可达到增溶、掩味和提高稳定性的目的。HME是一种可用于工艺生产的技术,制备简单,自动化程度高,制备过程中无需溶剂,其独特的混合机制可使药物和载体达到分子水平的混合。通过HME,药物以无定形状态分散或者以分子状态溶解于载体中,通过二者间的相互分子作用使药物包埋于载体,阻止药物与味蕾接触,从而达到掩味成
3D打印(3D printing technology, 3DP)是一种逐层制造技术,预先使用计算机软件辅助设计制剂结构,而后将药物材料通过逐层打印的方式制成特定性状、多层结构和不同释放方式的制
硅酸镁铝是一种具有吸附药物能力的黏土材料,可通过吸附作用将药物嵌入硅酸镁铝空隙内,阻止药物与味蕾接触从而达到掩味效果。Kharb
Lee
介孔材料为一种孔径介于微孔与大孔之间的具有巨大表面积和三维孔道结构的新型材料,可分为硅基和非硅基两类。

图1 一种有序介孔分子筛合成机制及外观模型
Wu
苦味受体拮抗剂通过同苦味化合物竞争性与苦味受体结合,以达到阻止苦味传导的目的。已知的苦味掩盖剂有单磷酸腺苷(AMP)、磷脂酸、4-(2,2,3-三甲基环戊基)丁酸、氨基酸衍生物和肽类
口感评测是验证掩味效果的关键检测环节,药物口感是指当药物在口腔中进行溶解、释放和吸收,药物与唾液、味蕾、黏膜等相互作用产生的综合口感。可分为真实滋味、砂砾感、黏附感、刺激性等。测试药物苦度的可行性方法可分为体外评价手段和体内评价手段两种。
功能性磁共振成像(functional magnetic resonance imaging,fMRI)是一种神经影像学技术,分为脑血流测定技术,脑代谢测定技术,神经纤维示踪技术,其中灌注加权和血氧水平依赖效应成像(BOLD)因其无辐射性,能快速反应大脑实时变化情况,应用最为广
对于依赖胃液pH释放或延缓、阻断药物与苦味受体接触的制剂,可通过考察模拟唾液中的药物释放量,定量检测药品在体外的溶出情况,以评价制剂掩味效果。体外溶出实验的优势在于简单易行,试验周期短,重复性好,成本低,适合制剂掩味处方开发时的快速评价。人工唾液一般为体外溶出实验的常用介质,可使用磷酸将其调节至合适p
来 源 | 配 方 | 参考文献 |
---|---|---|
ISO/TR 10271标准 | NaCl: 0.4 g,KCl: 0.4 g,CaCl2·2H2O: 0.795 g,NaHPO4·2H2O: 0.78 g,Na2S·2H2O: 0.005 g,尿素: 1 g,蒸馏水: 1 000 mL |
[ |
Fusayama配方 | NaCl: 0.4 g/L,KCl: 0.4 g/L,NaHP2O4·H2O : 0.69 g/L,CaCl2·H2O: 0.79 g/L,尿素: 1.0 g/L |
[ |
Greenwood配方 | KCl: 2.4 g,Ca3(PO4): 20.6 g,K2HPO4: 1.4 g,K2SO4: 0.9 g,Na3PO4: 0.8 g,白蛋白: 5.0 mg,蒸馏水: 1 000 mL |
[ |
味觉指纹分析技术(如:电子舌)是近年来常用的化学评价方法,可用于检测食品及药物口感,并将其客观、量化表征味觉信息的新型分析检测仪器,由味觉传感器阵列、信号采集系统和模式识别系统组成。味觉传感器阵列模拟人类感味神经,通过测定不同液体样品成分中的浓度表征其口感情况;信号处理系统将味觉信号转换成电信号,并将其储存;模式识别系统采用多元统计分析方法对信号处理系统采集的电信号进行识别、统计分析和处

图2 日本Insent电子舌仪器组成结构

图3 法国Alpha M.O.S电子舌仪器组成结构
电子舌可以分析有毒样品,分析速度快,对液体中不同组分的高度交叉敏感性高,因此可用于人口无法直接品尝的药物风味评测,避免主观差异,不涉及复杂的伦理学问题,但所测样品必须为液体,测量条件(如药物释放过程中的温度、流体动力学参数、介质组成等)都会对结果造成很大影响,选取不当会造成与药物实际口感不一
电子舌可通过不同的分析方法将药物口感量化,最常用的数据分析方法是主成分分析(principal component analysis, PCA)、偏最小二乘法(partial least squares, PLS
近年来有学者使用动物验证口服制剂掩味效果,其原理是基于动物对药物气味的喜好或厌恶的程度表征药物口感, 通过动物行为学、电生理试验、味觉外周感受器味蕾特征变化、基因敲除技
人工口尝评价的试验方法设计包括单一样品对照评价法、苦度值等级评价法、综合评分评价法、模糊综合评价法、视觉模拟评分法、多因素调查评价、量度匹配及幅度标记评价法、味觉磁共振成像评价法
研究者们依据能解决复杂问题的大脑神经元构造了BP神经网络,所谓BP神经网络是指按照误差逆向传播算法的多层前馈神经网络,其非线性映射能力

图4 BP神经网络多层结构

图5 BP神经网络训练过程
关于此方面于药学领域的内容较少,鲜少有研究将其利用于药品口感评价预测,相信将来BP神经网络预测模型能用于和药物制剂相关的实际应用当中,为药物掩味及口感分析测定提供更多思路和新型策略。
随着医药行业技术和设备水平的不断精进,在考察药物质量的同时,患者服药顺应性也逐渐成为重要指标。目前用于掩味的工艺及方法仍存在待解决问题,例如载药量小,辅料对药物分子的选择性,工艺对药物溶出、吸收及稳定性的影响,药物与辅料的蓄积毒性,设备因素局限等,均有待进一步优化。如需同食品饮料等同服以改善口感的制剂,还应对其进行安全性及有效性评价。在今后对不良口感药物的实际掩味研究中,因药物自身毒性、人体感官差异、电子舌检测器的检测限制及结果偏差,后期研究应针对药物口感评测方法进行更多尝试和研究,如通过BP算法建立人工神经网络,用其评测药物口感及建立实验模型等,弥补该领域的短板并开发更多安全、准确、可靠的口感评测技术手段,达到精准量化药物口感的目的。
References
Wu CH, Yang YJ, Zhu MM, et al. Key techniques for granulation and flavor masking of innovative Chinese medicinal preparations for children: a review[J]. China J Chin Mater Med (中国中药杂志), 2022, 47(21): 5708-5716. [百度学术]
Li J. To compare the clinical efficacy and safety of oral 10% chloral hydrate and retention enema for sedation in children[J]. Chin J Clin Res (中国临床研究), 2015, 28(8): 1101-1103. [百度学术]
Wu F, Zhao CC, Feng Y, et al. Taste-and smell-masking for oral preparations of traditional Chinese medicine[J]. Chin New Drug J (中国新药杂志), 2015, 24(8): 893-899. [百度学术]
Li NJ, Feng YR, Wang RN, et al. Review on the application of common formulations and generic techniques of children’s Chinese medicine preparations[J]. J Nanjing Univ Tradit Chin Med (南京中医药大学学报), 2022, 38(9): 780-789. [百度学术]
Xiao Z, Li Z, Sun YY, et al. Review of taste masking techniques in Chinese patent medicine[J]. China J Chin Mater Med (中国中药杂志), 2021, 46(2): 333-339. [百度学术]
Bansal A, Krieg B, Sharma N, et al. Taste masking of granulated acetaminophen by water insoluble ethylcellulose coating[J]. Folia Med (Plovdiv), 2021, 63(1): 97-104. [百度学术]
Drašković M, Medarević D, Aleksić I, et al. In vitro and in vivo investigation of taste-masking effectiveness of Eudragit E PO as drug particle coating agent in orally disintegrating tablets[J]. Drug Dev Ind Pharm, 2017, 43(5): 723-731. [百度学术]
Zhu Y, You XR, Huang KQ, et al. Effect of taste masking technology on fast dissolving oral film: dissolution rate and bioavailability[J]. Nanotechnology, 2018, 29(30): 304001. [百度学术]
Patil R, Pande V, Sonawane R. Nano and microparticulate chitosan based system for formulation of carvedilol rapid melt tablet[J]. Adv Pharm Bull, 2015, 5(2): 169-179. [百度学术]
Qin W, He YZ, Guo Z, et al. Optimization of taste-masking on ibuprofen microspheres with selected structure features[J]. Asian J Pharm Sci, 2019, 14(2): 174-182. [百度学术]
Chikukwa MTR, Wesoly M, Korzeniowska AB, et al. Assessment of taste masking of captopril by ion-exchange resins using electronic gustatory system[J]. Pharm Dev Technol, 2020, 25(3): 281-289. [百度学术]
Dungarwal UN, Patil SB. Development of orodispersible tablets of taste masked rizatriptan benzoate using hydroxypropyl β cyclodextrin[J]. J Pharm Investig, 2016, 46(6): 537-545. [百度学术]
Sun QY, Mou YF, Zhang Z, et al. Preparation and in vitro-in vivo evaluation of tadalafil orally disintegrating tablets[J]. Chin J Pharm (中国医药工业杂志), 2021, 52(12): 1630-1637. [百度学术]
Oza N, Sagar S, Khodakiya A, et al. A statistical approach to development of taste masked effervescent tablets of sildenafil citrate containing kyron t134[J]. Int J App Pharm, 2020: 135-143. [百度学术]
Liu MX, Yin DP, Fu HL, et al. Double-coated enrofloxacin microparticles with chitosan and alginate: preparation, characterization and taste-masking effect study[J]. Carbohydr Polym, 2017, 170: 247-253. [百度学术]
Sabere ASM, Suhaimi NANM, Ahmed QU, et al. Soft-chewable paracetamol tablets by melt granulation method: formulation and characterization[J]. J Pharm Bioallied Sci, 2021, 13(3): 312-316. [百度学术]
Bebawy G, Sokar M, Abdallaha OY. Novel risperidone orally disintegrating minitablets for pediatric use: patient acceptance and dose adjustment[J]. Drug Dev Ind Pharm, 2021, 47(4): 542-551. [百度学术]
Luo YJ, Huang GT, Zheng Q, et al. Review and prospect of drug solid dispersion preparation technology[J]. Chin Pharm J (中国药学杂志), 2020, 55(17): 1401-1408. [百度学术]
Li JL, Li CH, Zhang H, et al. Preparation of azithromycin amorphous solid dispersion by hot-melt extrusion: an advantageous technology with taste masking and solubilization effects[J]. Polymers, 2022, 14(3): 495. [百度学术]
Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine[J]. Biofabrication, 2017, 9(2): 024102. [百度学术]
Carlson K. Apparatus and method for creating three dimensional objects: US20050251275[P]. 2005-11-10. [百度学术]
Han XL, Wang ZM, Gao J, et al. Prospects of 3D printed personalized medicines for pediatric preparations[J]. Chin J Pharm (中国医药工业杂志), 2020, 51(10): 1234-1242. [百度学术]
Zhang ZR, Feng S, Almotairy A, et al. Development of multifunctional drug delivery system via hot-melt extrusion paired with fused deposition modeling 3D printing techniques[J]. Eur J Pharm Biopharm, 2023, 183: 102-111. [百度学术]
Ehtezazi T, Algellay M, Islam Y, et al. The application of 3D printing in the formulation of multilayered fast dissolving oral films[J]. J Pharm Sci, 2018, 107(4): 1076-1085. [百度学术]
Kharb V, Saharan VA, Kharb V, et al. Formulation and characterization of taste masked ondansetron-magnesium aluminum silicate adsorption systems[J]. Drug Dev Ind Pharm, 2016, 42(8): 1291-1299. [百度学术]
Lee JH, Choi G, Oh YJ, et al. A nanohybrid system for taste masking of sildenafil[J]. Int J Nanomedicine, 2012, 7: 1635-1649. [百度学术]
Oh YJ, Choi G, Choy YB, et al. Aripiprazole-montmorillonite: a new organic-inorganic nanohybrid material for biomedical applications[J]. Chemistry, 2013, 19(15): 4869-4875. [百度学术]
Wu L, Liu A, Jin Y, et al. 36 Study on the taste-masking performance of mesoporous molecular sieves[J]. J Invest Med, 2016, 64: A13. [百度学术]
Cao YD, Li FF, Zhang Y, et al. Bitter taste receptors: biological characteristics, signal transduction mechanism, and effects of bitters and bitter taste inhibitors[J]. Chin J Animal Nutr (动物营养学报), 2017, 29(3): 769-775. [百度学术]
Li XL, Wang PP, Liu RX, et al. Investigation of taste-masking effects of three kinds of masking agents used alone or in combination on phellodendri Chinensis cortex and comparison on its chemical components before and after taste-masking[J]. Chin J Exp Tradit Med Formulae (中国实验方剂学杂志), 2017, 23(2): 7-11. [百度学术]
Zhang HM, Deng YY, Zhang RF, et al. Taste modification of bitter melon (Momordica charantia) powder by different bitterness inhibitors[J]. Food Sci (食品科学), 2018, 39(10): 298-303. [百度学术]
Geerts H, Roberts P, Spiros A. Exploring the relation between BOLD fMRI and cognitive performance using a computer-based quantitative systems pharmacology model: applications to the COMTVAL158MET genotype and ketamine[J]. Eur Neuropsychopharmacol, 2021, 50: 12-22. [百度学术]
Zhao SY, Lin JZ, Jiang H, et al. Prospective analysis for application of functional magnetic resonance imaging technology in masking evaluation of Chinese materia medica preparations[J]. Chin Tradit Herb Drugs (中草药), 2017, 48(20): 4139-4144. [百度学术]
Kaskan PM, Dean AM, Nicholas MA, et al. Gustatory responses in macaque monkeys revealed with fMRI: comments on taste, taste preference, and internal state[J]. Neuro Image, 2019, 184: 932-942. [百度学术]
Canna A, Prinster A, Fratello M, et al. A low-cost open-architecture taste delivery system for gustatory fMRI and BCI experiments[J]. J Neurosci Methods, 2019, 311: 1-12. [百度学术]
Wu HT, Zhu GW. Application of artificial saliva in stomatology research[J]. Acta Acad Med Zunyi (遵义医学院学报), 2007, 30 (1): 91-93. [百度学术]
Guimarães TF, Vital ICF, de Sousa EGR, et al. Investigation of chloroquine resinate feasibility and in vitro taste masking evaluation for pediatric formulations[J]. AAPS PharmSciTech, 2022, 23(2): 69. [百度学术]
Stagner WC, Iyer M, Rathod V, et al. Human volunteer, in vitro, and molecular level evaluation of an optimized taste-masked isoniazid-chitosan spray-dried microparticle matrix[J]. Int J Pharm, 2019, 572: 118774. [百度学术]
ISO TR10271. Dentistry—determination of tarnish and corrosion of metals[S]. Switzerland, 1993, 3. [百度学术]
Wiegman-Ho L, Ketelaar JA. Corrosion rate studies: measurements of corrosion rates of some non-precious dental alloys in artificial saliva[J]. J Dent, 1987, 15(4): 166-170. [百度学术]
Kitsugi A, Okuno O, Nakano T, et al. The corrosion behavior of Nd2Fe14B and SmCo5 magnets[J]. Dent Mater J, 1992, 11(2): 119-129. [百度学术]
Zhao YY, Wang CH, Zhang ZK, et al. Application progress on taste evaluation methods for oral preparations[J]. China J Chin Mater Med (中国中药杂志), 2022, 47(2): 358-366. [百度学术]
Hang BL, Qian Y, Lin QP. Research progress of drug taste masking technology and its evaluation methods[J]. Chin J Pharm (中国医药工业杂志), 2017, 48(11): 1559-1568. [百度学术]
Zhang WF, Wang XL, Zhai GX, et al. Research progress on taste evaluation methods for pediatric drug products[J]. China Pharm Med Instrum (中国医药), 2021, 16(9): 1407-1411. [百度学术]
Li XF, Wu S, Shu Y, et al. Research progress of taste masking techniques of bitter pharmaceuticals[J]. Pharm Clin Chin Mater Med (中药与临床), 2013, 4(4): 57-60. [百度学术]
Liu Q, Fan H, Deng YJ, et al. Taste evaluation methods for pharmaceutical preparations and their application in traditional Chinese medicine preparations[J]. Chin Tradit Pat Med (中成药), 2022, 44(5): 1531-1534. [百度学术]
Maniruzzaman M, Bonnefille M, Aranyos A, et al. An in-vivo and in-vitro taste masking evaluation of bitter melt-extruded drugs[J]. J Pharm Pharmacol, 2014, 66(2): 323-337. [百度学术]
Li L, Yang SL, Wang YW, et al. Electronic tongue analyzes the change of “taste” in process of Crataegi Fructus[J]. Chin Tradit Pat Med (中成药), 2015, 37(1): 153-156. [百度学术]
Bai J, Gao LL, Zhang ZQ, et al. Application and related mechanism of electronic tongue technology in traditional Chinese medicine[J]. Central South Pharm (中南药学), 2021, 19(1): 78-84. [百度学术]
He CX, Du YK, Yang X, et al. Taste-masking effect of montelukast sodium orally disintegrating tablets using electronic tongue analysis and human sensory evaluation method[J]. Chin Pharm J (中国药学杂志), 2020, 55(16): 1354-1357. [百度学术]
Li XL, Kang H, Tian LY, et al. Evaluation of different types of bitterness masking on inhibition of bitterness efficiency and law of four Chinese materia medicine decoctions of Gentianae Radix et Rhizoma, Sophorae Flavescentis Radix, Andrographis Herba, and Nelumbinis Plumula[J]. Chin Tradit Herb Drugs (中草药), 2018, 49(22): 5280-5291. [百度学术]
Yang LP, Ni N, Hong YL, et al. Spectrum-taste correlation analysis on the characteristics of electric tongue and chemical constituents in response to the pungent taste of Ligusticum chuanxiong[J]. Chin Tradit Pat Med (中成药), 2021, 43(7): 1805-1811. [百度学术]
Wang YL, Chen PJ, Gui XJ, et al. Study on four kinds of taste classification and identification of natural medicines based on electronic tongue[J]. China J Tradit Chin Med Pharm (中华中医药杂志), 2021, 36(1): 423-433. [百度学术]
Wang ZM, Li JR, Hong XX, et al. Taste masking study based on an electronic tongue: the formulation design of 3D printed levetiracetam instant-dissolving tablets[J]. Pharm Res, 2021, 38(5): 831-842. [百度学术]
Jiang H, Zhang DK, Lin JZ, et al. Application progress of biological detection methods in preparation taste evaluation[J]. Chin Tradit Pat Med (中成药), 2017, 39(3): 588-592. [百度学术]
Noorjahan A, Amrita B, Kavita S. In vivo evaluation of taste masking for developed chewable and orodispersible tablets in humans and rats[J]. Pharm Dev Technol, 2014, 19(3): 290-295. [百度学术]
Wei XJ, Wan JH, Li JY, et al. Research progress on flavoring technology and evaluation methods of traditional Chinese medicine preparations[J]. China Pharm (中国药房), 2021, 32(8): 1009-1013. [百度学术]
Wang X, Zhang DK, Lin JZ, et al. Research progress on evaluation methods of mouthfeel of oral drug delivery system[J]. Chin Tradit Herb Drugs (中草药), 2015, 46(14): 2167-2172. [百度学术]
Yuan L, Yang XS, Wang BZ. Prediction of time reversal channel with neural network optimized by empirical knowledge based genetic algorithm[J]. Acta Phys Sin (物理学报), 2019, 68(17): 170503. [百度学术]
Yuan BQ, Cheng G, Zheng LG. Basic principle of BP neural networks[J]. Digit Commun World (数字通信世界), 2018(8): 49-51. [百度学术]
Liu RX, Zhang XD, Zhang L, et al. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network[J]. Exp Ther Med, 2014, 7(6): 1696-1702. [百度学术]
Li Y, Gong JW, Fei CH, et al. Flash GC e-nose combined artificial neural network for rapid identification and odor differential markers of three kinds of Schisandrae Chinensis Fructus pieces[J]. Chin Tradit Herb Drugs (中草药), 2022, 53(5): 1303-1312. [百度学术]
Yang TT, Zhou XY, Qian SH, et al. Application of GA-BP neural network for prediction model of gelatin gummy taste[J]. J Chin Inst Food Sci Technol (中国食品学报), 2022, 22(7): 238-247. [百度学术]