摘要
生物膜仿生纳米制剂有低免疫原性、高靶向性以及良好的生物相容性,且可避免被内皮网状系统清除,使其在体内血液循环时间更长。本文主要综述了生物膜仿生纳米制剂的主要类型及各自的优缺点,包括肿瘤细胞膜、红细胞膜、血小板膜、白细胞膜、干细胞膜、细胞外囊泡(外泌体、微囊泡及凋亡小体)、内质网膜以及复合生物膜等。同时针对生物膜仿生纳米制剂的研究现状,对其面临的挑战以及未来发展前景进行了展望,以期为生物膜仿生纳米制剂的进一步研究提供思路。
随着现代医疗技术的发展,许多长期困扰人类生命健康的疾病已经逐渐被控制,如水
生物细胞膜仿生纳米递药系统具有生物相容性和低免疫原性等优势,目前已成为相关领域的研究热点。肿瘤细胞具有极强的增殖能力,体外培养即可大量获得,为相关研究奠定了物质基础。肿瘤细胞膜因其自身免疫逃逸的性质,能够延长纳米粒在血液中的循环时间,从而提高药物治疗肿瘤的选择性积
生物膜类型 | 优 点 | 缺 点 | 代表性研究成果 |
---|---|---|---|
肿瘤细胞膜 | 肿瘤同源靶向性、肿瘤细胞易培养、免疫逃逸 | 生物安全性尚不十分明确 |
H460肺癌细胞膜纳米粒系 |
红细胞膜 | 体内半衰期长、膜易分离获取、低免疫原性 | 应用需考虑血型匹配等问题 |
红细胞膜包裹天然纳米 |
血小板膜 | 靶向缺血损伤区域、低免疫原性 | 应用范围窄,多应用于创伤、炎症等方面 |
血小板膜涂层的聚酰胺-胺树枝状大分子纳米递送平 |
白细胞膜 | 低免疫原性、体内迁移能力强、对肿瘤细胞免疫应答 | 应用范围窄,多应用于肿瘤靶向制剂 |
巨噬细胞膜包裹紫杉醇硫化铜纳米 |
干细胞膜 | 低免疫原性、肿瘤靶向性、具有免疫调节功能和跨血脑屏障的能力 | 干细胞体外培养较其他细胞困难 |
人脐带间充质干细胞膜包裹二氧化锰纳米粒子系 |
细胞外囊泡 | 低免疫原性、任何细胞均可生成、体积小、生物相容性好 | 外泌体、微囊泡及凋亡小体三者之间以及其他细胞碎片不易完全分离 |
小鼠胚胎瘤成软骨细胞外泌体5Z- |
内质网 | 体内特殊途径转运,避免降解破坏、可有效促进细胞摄取 | 相关研究尚处于起步阶段 |
内质网膜修饰阳离子脂质纳米siRNA递送载 |
Len
红细胞是机体血液中含量最多、寿命最长的成分,其在血液中的体循环时间达100~120
Huang

图1 红细胞膜包裹磁核-壳介孔纳米复合材料(Fe/MS/HPA/ASC)制备思路及其清除红细胞中Cr(Ⅵ)的机制图
A:红细胞膜包裹磁核-壳介孔纳米复合材料的过程;B:机体外血液循环过程;C:体外血液循环实验中治疗药物清除红细胞中Cr(Ⅵ)的机制;MS:介孔二氧化硅;HPA:超支链聚酰胺;ASC:抗坏血酸
血小板是机体血液中天然存在的一种无核盘状细胞,直径为2 ~ 3 mm,主要起止血调节作用,在血管生成和先天免疫中也发挥一定作用。血小板来源于一种主要存在于骨髓中较大的有核细胞,称为巨核细胞。在生成过程中,巨核细胞将血小板延伸到窦状血管,并最终从血管内释
Yue
机体发生炎症反应,或者是肿瘤生成都会产生大量的免疫细胞,包括白细胞。白细胞在血液中天然存在,其数量可因每日不同时间、机体的功能状态而在一定范围内变化。白细胞具有较强的移动能力,可从血管内迁移到血管外,也可从血管外组织迁移到血管内。因此,白细胞也广泛存在于血管、淋巴管以外的机体组织中。白细胞主要功能是为机体起到防御的作用,可识别体外来源的细菌、病毒等,主要分为巨噬细胞、粒细胞和淋巴细胞。各种白细胞对异常细胞和组织均有免疫应答响应,因此白细胞膜仿生递药系统用于靶向递送药物的研究也逐渐成为热点。
Zhang
Zhang
淋巴细胞是体积最小的白细胞,由淋巴器官产生,主要存在于淋巴管中的淋巴液中,是机体免疫应答功能的重要细胞成分,可分为T淋巴细胞(T细胞)、B淋巴细胞(B细胞)和自然杀伤细胞(NK细胞)。Zhang
干细胞是一类具有无限的或者永生的自我更新能力的细胞、能够产生至少一种类型的、高度分化的子代细
Li
细胞外囊泡根据大小和来源可分为外泌体、微囊泡和凋亡小体。外泌体是一种在生理或者病理情况下由细胞以胞吐的形式分泌到细胞外的胞外囊泡,直径为40 ~ 100 nm,由脂质双分子层包绕而
内质网是真核细胞内调节钙稳态、蛋白质合成、加工及运输十分重要的细胞
不同类型细胞膜具有各自特定的特性,因此除了单一生物膜仿生递药系统外,越来越多的研究也趋向于将两种生物膜联合来构建复合生物膜仿生递药系统。复合生物膜可同时放大两种细胞原本的优势。Zhao

图2 肿瘤细胞膜与红细胞膜复合仿生纳米递药系统制备思路及其在体内抗肿瘤机制
生物膜仿生纳米药物的出现和发展为许多疾病的治疗带来了新方向,尤其是在肿瘤的靶向治疗领域有着传统药物无法比拟的优势。与传统药物相比,仿生纳米药物具有低免疫原性、高靶向性以及良好的生物相容性,且可避免被内皮网状系统清除,使其在体内血液循环时间更长。近年来,生物膜仿生纳米药物的研究得到了极大的发展。但同时也存在一些需要面临的挑战和问题:一是生物膜的提取分离工艺不够成熟,多是以反复冻融结合差速离心法来制备细胞膜,这种方法的优点是简便快捷,可短时间内大量制备。但此法专属性不强,制得的成品率保证不了,其他细胞碎片难以祛除,也降低了后续实验的重复性。如何开发出一种既省时省力,产品纯度又高的细胞膜制备方法仍是一个亟待解决的问题。二是生物膜安全性的问题,虽然大量研究证明生物膜仿生纳米药物具有低免疫原性,但验证实验依旧处于动物体的短时间内进行,对于人类机体来说,生物膜仿生纳米药物仍是异体物质,长期是否会出现不良反应还是未知的。同时,生物膜在包裹纳米粒子时是否会引入热源、病毒等也需考虑。另一方面,肿瘤细胞膜是否还保留致癌因素也是一个需要研究的问题。三是一些名称叫法混乱的问题,例如许多研究对象为外泌体,但实际上其提取的可能是微囊泡、凋亡小体或者三者的混合物。实际上还是提取工艺的问题,没有较好的方法使这三者完全分离。
纵观国内外,由于肿瘤细胞自身独特的生物功能,生物膜仿生纳米药物的研究多集中在肿瘤靶向治疗方面,其他方向研究相对较少。纳米仿生药物的出现成为了研究者的突破点,也为肿瘤治疗提供了新的方向。相信随着研究的深入,更多疾病会随着新型药物的开发被逐渐攻克。
References
Sui HT, Jia T, Guo Y, et al. Application progress of live attenuated varicella vaccine[J]. Chin J Viral Dis (中国病毒病杂志), 2022, 12(4): 316-320. [百度学术]
Yi XC, Zhang LX, Zhang YN. Progress in plague treatment strategies[J]. Chin J Zoonoses (中国人兽共患病学报), 2022, 38(9): 830-838. [百度学术]
Sun CK, Chen X, Cheng H, et al. Advances of research on oxygen-enhancing nano-delivery system for photodynamic therapy[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(4): 387-397. [百度学术]
Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proc Natl Acad Sci U S A, 2011, 108(27): 10980-10985. [百度学术]
Xu JP, Xu QW, Wang XQ, et al. Advances in biomimetic drug delivery systems based on platelet and platelet membrane[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(6): 653-659. [百度学术]
Wang JT, Mai ZS, Ding XW, et al. Research progress of nanometer drug delivery system based on tumor cell membrane[J]. Med J Wuhan Univ (武汉大学学报 医学版), 2020, 41(6): 944-948. [百度学术]
Tian R, Wang ZY, Niu RF. Research progress in cell biomimetic drug delivery systems for tumor therapy[J]. Chin J Clin Oncol (中国肿瘤临床), 2021, 48(13): 690-694. [百度学术]
Leng JK. The study on construction and anti-tumor effect of tumor cell membrane modified polydopamine nanoparticle drug-delivery system(肿瘤细胞膜修饰聚多巴胺纳米粒药物递送系统的构建及抗肿瘤研究)[D]. Dalian: Dalian University of Technology, 2022. [百度学术]
Yang HB, Yu ZY, Yan J, et al. Construction and evaluation of a nano-drug delivery system camouflaged by cancer cell membrane[J]. J Shanxi Med Univ (山西医科大学学报), 2022, 53(2): 127-133. [百度学术]
Wang T. Nanoparticles wrapped in cancer cell membranes for targeted chemotherapy combined with photothermal therapy(癌细胞膜包裹的仿生纳米粒用于靶向化疗联合光热治疗)[D]. Zhengzhou: Zhengzhou University, 2021. [百度学术]
Meng XZ, Wang JJ, Zhou JD, et al. Tumor cell membrane-based peptide delivery system targeting the tumor microenvironment for cancer immunotherapy and diagnosis[J]. Acta Biomater, 2021, 127: 266-275. [百度学术]
Tang WX, Li X, Lyu M, et al. Cancer cell membrane biomimetic mesoporous nanozyme system with efficient ROS generation for antitumor chemoresistance[J]. Oxid Med Cell Longev, 2022, 5089857. [百度学术]
Wang HJ, Wang K, He LH, et al. Engineering antigen as photosensitiser nanocarrier to facilitate ROS triggered immune cascade for photodynamic immunotherapy[J]. Biomaterials, 2020, 244: 119964. [百度学术]
Chen Z, Zhao PF, Luo ZY, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy[J]. ACS Nano, 2016, 10(11): 10049-10057. [百度学术]
Ji Y, Zhang ZT, Hou WJ, et al. Enhanced antitumor effect of icariin nanoparticles coated with iRGD functionalized erythrocyte membrane[J]. Eur J Pharmacol, 2022, 931: 175225. [百度学术]
Liu X. Investigation on the anti-tumor activity of MLN4924 nano drug delivery system based on platelet membrane bionics(基于血小板膜仿生的MLN4924纳米药物递送系统的体外抗肿瘤活性研究)[D]. Zhengzhou: Zhengzhou University, 2021. [百度学术]
Hu CM, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121. [百度学术]
Poudel K, Banstola A, Gautam M, et al. Macrophage-membrane-camouflaged disintegrable and excretable nanoconstruct for deep tumor penetration[J]. ACS Appl Mater Interfaces, 2020, 12(51): 56767-56781. [百度学术]
Xue JW, Zhao ZK, Zhang L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol, 2017, 12(7): 692-700. [百度学术]
Zhang LR, Li RT, Chen H, et al. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer[J]. Int J Nanomedicine, 2017, 12: 2129-2142. [百度学术]
Xie LX, Zhang CW, Liu M, et al. Nucleus-targeting manganese dioxide nanoparticles coated with the human umbilical cord mesenchymal stem cell membrane for cancer cell therapy[J]. ACS Appl Mater Interfaces, 2023, 15(8): 10541-10553. [百度学术]
Wang SY. Stem cell membrane coated isotretinoin for acne treatment(干细胞膜包裹异维A酸治疗痤疮的研究)[D]. Chang chun: Jilin University, 2021. [百度学术]
Fan YF, Cheng J, Xu Y, et al. 5Z-7-oxozeaenol Delivered by Atdc5-derived Exosomes for the Treatment of Osteoarthritis[J]. Chin J BiochemMol Biol (中国生物化学与分子生物学报), 2023, 39(5): 706-714. [百度学术]
Sheng SP. Study on the application of functionalized apoptososome drug delivery system for precise delivery of tumors and photothermal immunotherapy(功能化凋亡小体载药系统用于肿瘤精准递送及光热—免疫联合治疗的研究)[D]. Beijing: Peking Union Medical College, 2022. [百度学术]
Qiu C, Han HH, Sun J, et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes[J]. Nat Commun, 2019, 10(1): 2702. [百度学术]
Kuhn V, Diederich L, 4thKeller TCS, et al. Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, Anemia[J]. Antioxid Redox Signal, 2017, 26(13): 718-742. [百度学术]
Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy[J]. Colloids Surf B Biointerfaces, 2022, 220: 112895. [百度学术]
Gong JQ, Zhao JN, Wang YH, et al. Research progress on cell membrane-derived biomimetic drug delivery systems for cancer therapy[J]. Her Med (医药导报), 2022, 41(12): 1810-1815. [百度学术]
Huang JW, Jiang CY, Luo YY, et al. A novel drug delivery system—red blood cell membranes biomimetic nanoparticles[J]. J Zhongshan Univ Nat Sci Ed (中山大学学报 自然科学版), 2019, 58(5): 114-118. [百度学术]
Wang M, Yan WQ, Chu ML, et al. Erythrocyte membrane-wrapped magnetic nanotherapeutic agents for reduction and removal of blood Cr(VI)[J]. ACS Appl Mater Interfaces, 2020, 12(25): 28014-28023. [百度学术]
Miao YQ, Yang YT, Guo LM, et al. Cell membrane-camouflaged nanocarriers with biomimetic deformability of erythrocytes for ultralong circulation and enhanced cancer therapy[J]. ACS Nano, 2022, 16(4): 6527-6540. [百度学术]
Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure[J]. Handb Exp Pharmacol, 2012(210): 3-22. [百度学术]
Yue XT. Construction of platelet membrane modified PLGA-MSCs biomimetic nanoparticles and its repair effect on damaged endothelium(血小板膜修饰的间充质基质细胞-PLGA仿生纳米颗粒的构建及对损伤内皮的修复作用分析)[D]. Zhengzhou: Zhengzhou University, 2021. [百度学术]
Ren DD. Construction of drug loading platform of platelet membrane bionic photothermal/chemotherapy synergistic therapy and its anti-tumor effect(血小板膜仿生的光热/化疗协同治疗载药平台的构建及抗肿瘤效果研究)[D]. Shanghai: Donghua University, 2021. [百度学术]
Zhang SY, He M, Sun C, et al. Construction of macrophage membrane-coated albumin nanoparticles and its drug delivery evaluation for glioma in vitro[J]. Chin Pharm J(中国药学杂志), 2022, 57(8): 636-644. [百度学术]
Lu CH, Zheng JP, Ding YN, et al. Cepharanthine loaded nanoparticles coated with macrophage membranes for lung inflammation therapy[J]. Drug Deliv, 2021, 28(1): 2582-2593. [百度学术]
Zhang C, Zhang L, Wu W, et al. Artificial super neutrophils for inflammation targeting and HClO generation against tumors and infections[J]. Adv Mater, 2019, 31(19): e1901179. [百度学术]
Kallert SM, Darbre S, Bonilla WV, et al. Replicating viral vector platform exploits alarmin signals for potent CD
Liu B, Cao W, Cheng J, et al. Human natural killer cells for targeting delivery of gold nanostars and bimodal imaging directed photothermal/photodynamic therapy and immunotherapy[J]. Cancer Biol Med, 2019, 16(4): 756-770. [百度学术]
Deng GJ, Sun ZH, Li SP, et al. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth[J]. ACS Nano, 2018, 12(12): 12096-12108. [百度学术]
Wu LY, Zhang FQ, Wei ZH, et al. Magnetic delivery of Fe3O4@polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment[J]. Biomater Sci, 2018, 6(10): 2714-2725. [百度学术]
Pei XT. Stem cell biology (干细胞生物学) [M]. Beijing: Science Press, 2003: 4-15. [百度学术]
Muslimov AR, Timin AS, Bichaykina VR, et al. Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers[J]. Biomater Sci, 2020, 8(4): 1137-1147. [百度学术]
Li W, Tong JL, Xia GM, et al. Preparation of mesenchymal stem cell membrane-biomimetic nano drug and its anti-tumor activity[J]. Chin J Cancer Prev Treat (中华肿瘤防治杂志), 2021, 28(10): 719-726. [百度学术]
Mu XP, Li J, Yan SH, et al. siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy[J]. ACS Biomater Sci Eng, 2018, 4(11): 3895-3905. [百度学术]
Wu HH. Construction of stem cell membrane derived biomimetic targeting carrier and its application in ischemic stroke therapy(基于干细胞膜的仿生靶向载体的构建及其对缺血性脑卒中治疗的研究)[D]. Hangzhou: Zhejiang University, 2022. [百度学术]
Hu MR, Chen T, Yang CQ, et al. Exosomes in the precision diagnosis and treatment of cancer[J]. J Shanghai Univ Nat Sci Ed (上海大学学报 自然科学版), 2017, 23(2): 161-168. [百度学术]
Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420. [百度学术]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383. [百度学术]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30: 255-289. [百度学术]
Ren WJ, Li ZX, Qiu F. Research progress on traditional Chinese medicine affecting tumor therapy based on exosomes[J]. Chin Tradit Herb Drugs (中草药), 2022, 53(22): 7234-7241. [百度学术]
Yu B, Wang K, Zhang ML, et al. Therapeutic effect of small extracellular vesicles derived from mesenchymal stem cells on retinal light injury and its mechanism[J]. Chin J Exp Ophthalmol (中华实验眼科杂志), 2023, 41(1): 8-15. [百度学术]
Liao ZQ, Zhang R, Tang JF. Research progress of endoplasmic reticulum integrated membrane protein SEC62[J]. Chem Life (生命的化学), 2023, 43(2): 247-256. [百度学术]
Zhao WN, Wang M, Zhang C, et al. Cancer cell membrane targeting and red light-triggered carbon monoxide (CO) release for enhanced chemotherapy[J]. Chem Commun, 2022, 58(61): 8512-8515. [百度学术]
Hao WY. Hybrid cell membrane-based brain-targeted biomimetic nano-drug delivery system(双膜融合脑靶向仿生纳米递送系统的研究)[D]. Beijing: Academy of Military Sciences, 2022. [百度学术]
Wang DD, Dong HF, Li M, et al. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma[J]. ACS Nano, 2018, 12(6): 5241-5252. [百度学术]