摘要
缺血性脑卒中是影响人类健康的重大疾病,目前有关它的病理机制并未完全阐明。小胶质细胞是中枢神经系统中重要的免疫细胞。缺血性脑卒中后,大量小胶质细胞激活,并向损伤区域迁移聚集,吞噬坏死的细胞或碎片,释放炎症因子或营养因子,参与了缺血性脑卒中的病理过程。其中小胶质细胞的吞噬作用在脑缺血损伤以及康复中发挥重要的作用。本文总结小胶质细胞吞噬作用的分子机制,并综述小胶质细胞吞噬作用在缺血性脑卒中的研究进展,探讨小胶质细胞吞噬作用在脑缺血损伤和康复中的多样性和复杂性,旨在为缺血性脑卒中的治疗和药物研发提供新的思路。
缺血性脑卒中(ischemia)是全球范围内致残率和致死率最高的疾病之
众所周知,小胶质细胞作为大脑内驻留的免疫细胞,在脑实质中发挥免疫监视作
小胶质细胞是大脑内的吞噬细胞,它可通过其突起不断监视附近区域的脑实质,当脑内环境发生改变,如出现病原物、细胞碎片或应激神经元等,它们就会释放出某种Find-me信号,这些信号将吸引小胶质细胞靠近,同时,迁移到损伤处小胶质细胞通过表面相应的受体与细胞碎片、神经元等表面暴露出的Eat-me或Don’t eat-me信号结合,如果与Eat-me信号结合将引发小胶质细胞的吞噬作用,而与Don’t eat-me信号结合则发挥抑制吞噬活性的作用(

图1 参与小胶质细胞吞噬作用的相关信号分子示意图
Find-me信号、Eat-me信号和Don’t eat-me信号共同调节小胶质细胞的吞噬活性。Find-me信号包括UTP-P2Y6、S1P-S1P2和CX3CL1-CX3CR1等; Eat-me信号包括C1q-CR3、PS-C1q-CR3、PS-GAS6/Protein s-MerTK、PS-MFGE8-VNR、PS-TIM/BAI1/Stabilin2等; Don’t eat-me信号包括CD47-SIRPα和PSP-CD22等
小胶质细胞要发挥吞噬作用,首先需要靠近被吞噬的对象,这就需要Find-me信号的参与。目前研究发现,Find-me信号有核苷酸、趋化因子CX3CL1(Fractalkine)和1-磷酸鞘氨醇(S1P)等,这些物质分别作用于小胶质细胞上的腺苷(或嘌呤)受体、CX3CR1受体和S1P2受体,吸引小胶质细胞的接近。神经元在受到损伤或应激后,会释放核苷酸,如三磷酸腺苷(ATP)、二磷酸腺苷(ADP)或三磷酸尿苷(UTP)这些物质,它们可以作为Find-me信号引导小胶质细胞向这些神经元所在的位置移
趋化因子CX3CL1是另外一种Find-me信
当小胶质细胞接受到Find-me信号后,可以向细胞碎片等被吞噬物质趋化靠近,但小胶质细胞如何精确地识别并吞噬这些物质?这就需要Eat-me信号的参与。Eat-me信号包括了磷脂酰丝氨酸(phosphatidylserine,PS)、补体成分C1q和C3等。PS广泛表达在真核细胞膜内侧面,是研究最为广泛的Eat-me信号之
另外,补体系统中的C1q也是一个重要的Eat-me信
神经系统不仅有Eat-me信号,也存在Don’t eat-me信号。有些免疫抑制信号可以作为Don’t eat-me信号对小胶质细胞的吞噬功能进行调节,如CD47和CD22
健康神经元的表面有唾液酸残基,整合成糖蛋白和糖脂。细胞表面的唾液酸通过与小胶质细胞表面的唾液酸结合性免疫球蛋白样凝集素(SIGLECs)受体相互作用来抑制吞噬作
在缺血损伤发生后,小胶质细胞作为脑内的免疫细胞被迅速激活、增殖,向损伤区域迁移,这一过程与Find-me信号的释放和识别有关。当小胶质细胞达到损伤区域后,可以识别细胞碎片、应激神经元、突触、髓鞘等组分上暴露的Eat-me信号,开始发挥吞噬作用(

图2 缺血性脑卒中后小胶质细胞的吞噬对象示意图
脑缺血损伤后,细胞死亡产生的大量细胞碎片是神经炎症产生的一个重要因
总之,脑缺血损伤后的早期,缺血脑组织有大量细胞碎片,具有高吞噬活性的小胶质细胞迅速清除组织细胞碎片是非常必要的。
在缺血性脑卒中发生后,小胶质细胞在缺血核心区以及周围大量聚
保护存活的神经元免受继发性损伤是避免神经功能恶化的关键。以上这些研究都表明,抑制小胶质细胞对应激神经元的吞噬能有效减少脑缺血后的神经元丢失,有益于损伤后的功能康复。
小胶质细胞对髓鞘碎片的正常吞噬有助于髓鞘的再生和修复,而髓鞘的过度吞噬则可能加剧脱髓
相反地,小胶质细胞对髓鞘碎片的吞噬可能有益于髓鞘的再生。在拟人参皂苷-F11(pseudoginsenoside-F11,PF11)对脑缺血模型神经保护作用的研究中,作者发现PF11可以促进OGD后小胶质细胞对髓鞘碎片的吞噬作用,同时这种作用能够被抗CD11b mAb显著抑制,说明PF11主要通过CR3加速小胶质细胞对髓鞘碎片的清除,对脑缺血后的神经功能发挥保护作
综上所述,调节小胶质细胞的吞噬活性是减轻脑缺血后髓鞘损伤或促进髓鞘再生的一个潜在途径。
小胶质细胞对于突触的吞噬作用在发育阶段以及AD、多发性硬化(multiple sclerosis,MS)和精神分裂症等疾病模型中得到了大量的研究,证据表明小胶质细胞对突触的吞噬作用参与了发育阶段的突触修剪,也是上述疾病模型中导致突触丢失的一个关键因
除此以外,在缺血性脑卒中损伤后,神经元所处的微环境类似于发育阶段,在新的突触发生之后,要经历修剪精炼才能整合进入功能环路发挥作用,这对于损伤之后的功能重建是至关重要
在缺血性脑卒中后,除了大脑内驻留的小胶质细胞会被激活,由于缺血损伤造成血脑屏障BBB的损伤,外周来源的巨噬细胞也会浸润到脑实质中,参与到缺血性脑卒中的病理过程
另外,外周浸润的巨噬细胞还会对脑内驻留的小胶质细胞的激活产生影响,包括小胶质细胞的数量和形
值得注意的是,大量缺血性脑卒中的研究对于小胶质细胞和外周来源巨噬细胞的作用并没有进行区分,可能的原因是两种细胞类型具有高度相似的标志物蛋白表达。虽然在大部分研究中,研究者可以通过小胶质细胞分支状的形态特征对小胶质细胞和巨噬细胞进行区分,但在脑缺血后的早期小胶质细胞高度激活,利用Iba1蛋白染色并不能区分染色阳性细胞是高度激活的小胶质细胞还是外周浸润的巨噬细胞。有研究显示TMEM119可以作为小胶质细胞的特异性标志物与巨噬细胞进行区
众多的研究表明,小胶质细胞吞噬作用在多种中枢神经系统疾病的病理过程中都发挥重要作用,因此,以调节小胶质细胞吞噬活性作为靶点的药物研发一直是备受关注的方向。现阶段该类药物的研发依然处于临床前实验或临床试验阶段,尤其是用于调节脑缺血后小胶质细胞吞噬活性的药物依然处于空白状态。下文将综述部分有可能成为缺血性脑卒中后调节小胶质细胞吞噬活性的药物靶点(
靶 点 | 动物模型 | 药物/处理方式 | 作用效果 | 参考文献 |
---|---|---|---|---|
C1q | 小鼠围产期缺氧缺血 | 富氢盐水 | 突触丢失减少 |
[ |
C3 | 小鼠大脑中动脉栓塞 | B4Crry | 被吞噬的存活神经元减少 |
[ |
C3 | 小鼠微栓塞模型 | B4Crry/t-PA、B4Crry联用 | 突触吞噬减少,认知功能改善 |
[ |
MerTK | 小鼠大脑中动脉栓塞 | 条件性敲除小胶质细胞Mertk | 突触吞噬减少,行为学改善 |
[ |
MerTK | 内皮素1诱导小鼠缺血模型 | Mertk基因敲除 | 神经元丢失减少,行为学改善 |
[ |
P2Y6 | 小鼠大脑中动脉栓塞 | MRS2578 | 抑制细胞碎片的清除,加重神经功能损伤 |
[ |
S1P | 小鼠大脑中动脉栓塞 | FTY-720 | 增强对细胞碎片的吞噬,减小脑梗死体积 |
[ |
用于阻断补体成分C1q的抗体药物已经被证明在多种疾病模型中具有良好的作用,如Annexon公司的C1q单克隆抗体药物ANX-M1。在野生型小鼠侧脑室中注射寡聚Aβ造成的小鼠AD模型中,存在明显的突触丢失现象,并且大量的突触与C1q共定位。而同时注射ANX-M1后,小鼠的突触丢失现象明显改
在发育阶段,小胶质细胞通过MerTK受体识别神经元上暴露的PS,参与到神经环路的突触修剪过程
研究报道,在小鼠MCAO后,小胶质细胞中P2Y6受体的表达增加,给予P2Y6受体拮抗剂MRS2578治疗后,抑制了小胶质细胞吞噬凋亡细胞碎片,从而加重神经功能损伤,说明P2Y6受体介导的小胶质细胞吞噬活性增强是有益于细胞碎片的清除
据最新研究报道,S1P可以作为TREM2受体的内源性配体,促进小胶质细胞的吞噬作用。FTY-720是S1P的类似物,在大鼠MCAO模型中,FTY-720表现出了良好的治疗作用。在脑缺血损伤后的两天内给予FTY-720治疗,可以显著增强小胶质细胞对神经元碎片的吞噬作用,减小脑梗死的体
米诺环素(minocycline)是四环素家族的一种抗菌药物,具有较好的血脑屏障通透性及抗炎效果。早期大量的基础研究和临床试验已经表明,米诺环素可通过其抗炎、抗氧化和抗细胞凋亡的特性,改善神经预后,预防脑缺血引起的神经元损
缺血性脑卒中后,受损脑区存在严重的突触丢失现象,而小胶质细胞的吞噬作用是突触丢失的重要因
综上所述,在缺血卒中后,小胶质细胞的吞噬作用具有两面性。一方面,小胶质细胞可以吞噬凋亡细胞、细胞碎片和髓鞘碎片,以限制炎症的产生,有益于减少缺血造成的损伤。另一方面,应激但仍然存活的神经元、突触和髓鞘等也会遭到小胶质细胞的吞噬,而这会加重神经功能的损伤,不利于功能的康复。虽然小胶质细胞的吞噬作用是神经发育过程以及各类中枢神经系统疾病病理机制的一个研究热点,但是依然没有能用于临床治疗的相关药物上市。特别是现阶段的研究对小胶质细胞吞噬作用在缺血性卒中病理过程以及功能康复中的作用和机制仍未清楚,因此迫切地需要阐明小胶质细胞吞噬作用在脑缺血后不同阶段、不同脑区、对不同吞噬对象的吞噬作用的异质性,以及不同吞噬相关信号分子之间的关系,期望找到调节小胶质细胞吞噬活性的关键靶标,为今后的药物研发提供新的思路。
References
Feigin VL, Brainin M, Norrving B, et al. World stroke organization (WSO): global stroke fact sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29. [百度学术]
Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke[J]. Nat Rev Neurosci, 2021, 22(1): 38-53. [百度学术]
Mendelson SJ, Prabhakaran S.Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11): 1088-1098. [百度学术]
Kierdorf K, Prinz M. Microglia in steady state[J]. J Clin Invest, 2017, 127(9): 3201-3209. [百度学术]
Borst K, Dumas AA, Prinz M.Microglia: immune and non-immune functions[J]. Immunity, 2021, 54(10): 2194-2208. [百度学术]
Prinz M, Jung S, Priller J.Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311. [百度学术]
Fu RY, Shen QY, Xu PF, et al. Phagocytosis of microglia in the central nervous system diseases[J]. Mol Neurobiol, 2014, 49(3): 1422-1434. [百度学术]
Brown GC, Neher JJ.Microglial phagocytosis of live neurons[J]. Nat Rev Neurosci, 2014, 15(4): 209-216. [百度学术]
Anwar S, Rivest S. Alzheimer’s disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation[J]. Expert Opin Ther Targets, 2020, 24(4): 331-344. [百度学术]
Butler CA, Popescu AS, Kitchener EJA, et al. Microglial phagocytosis of neurons in neurodegeneration, and its regulation[J]. J Neurochem, 2021, 158(3): 621-639. [百度学术]
Puigdellívol M, Milde S, Vilalta A, et al. The microglial P2Y6 receptor mediates neuronal loss and memory deficits in neurodegeneration[J]. Cell Rep, 2021, 37(13): 110148. [百度学术]
Sipe GO, Lowery RL, Tremblay MÈ, et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex[J]. Nat Commun, 2016, 7: 10905. [百度学术]
Diaz-Aparicio I, Paris I, Sierra-Torre V, et al. Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome[J]. J Neurosci, 2020, 40(7): 1453-1482. [百度学术]
Ravichandran KS.Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways[J]. Immunity, 2011, 35(4): 445-455. [百度学术]
Mecca C, Giambanco I, Donato R, et al. Microglia and aging: the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes[J]. Int J Mol Sci, 2018, 19(1): 318. [百度学术]
Gunner G, Cheadle L, Johnson KM, et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling[J]. Nat Neurosci, 2019, 22(7): 1075-1088. [百度学术]
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(6048): 1456-1458. [百度学术]
Sapkota A, Gaire BP, Kang MG, et al. S1P2 contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK[J]. Sci Rep, 2019, 9(1): 12106. [百度学术]
Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes[J]. Annu Rev Biophys, 2010, 39: 407-427. [百度学术]
Lemke G. How macrophages deal with death[J]. Nat Rev Immunol, 2019, 19(9): 539-549. [百度学术]
Scott-Hewitt N, Perrucci F, Morini R, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia[J]. EMBO J, 2020, 39(16): e105380. [百度学术]
Cockram TOJ, Dundee JM, Popescu AS, et al. The phagocytic code regulating phagocytosis of mammalian cells[J]. Front Immunol, 2021, 12: 629979. [百度学术]
Païdassi H, Tacnet-Delorme P, Garlatti V, et al. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition[J]. J Immunol, 2008, 180(4): 2329-2338. [百度学术]
Cornell J, Salinas S, Huang HY, et al. Microglia regulation of synaptic plasticity and learning and memory[J]. Neural Regen Res, 2022, 17(4): 705-716. [百度学术]
Cong Q, Soteros BM, Huo A, et al. C1q and SRPX2 regulate microglia mediated synapse elimination during early development in the visual thalamus but not the visual cortex[J]. Glia, 2022, 70(3): 451-465. [百度学术]
Dejanovic B, Huntley MA, De Mazière A, et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies[J]. Neuron, 2018, 100(6): 1322-1336.e7. [百度学术]
Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286): 712-716. [百度学术]
Kelley SM,Ravichandran KS. Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease[J]. EMBO Rep, 2021, 22(6):e52564. [百度学术]
Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint[J]. Immunity, 2020, 52(5): 742-752. [百度学术]
Lehrman EK, Wilton DK, Litvina EY, et al. CD47 protects synapses from excess microglia-mediated pruning during development[J]. Neuron, 2018, 100(1): 120-134.e6. [百度学术]
Ding X, Wang J, Huang M, et al. Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration[J]. Nat Commun, 2021, 12(1): 2030. [百度学术]
Puigdellívol M, Allendorf DH, Brown GC. Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration[J]. Front Cell Neurosci, 2020, 14: 162. [百度学术]
Pluvinage JV, Haney MS, Smith BAH, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains[J]. Nature, 2019, 568(7751): 187-192. [百度学术]
Linnartz B, Kopatz J, Tenner AJ, et al. Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia[J]. J Neurosci, 2012, 32(3): 946-952. [百度学术]
Choi YH, Laaker C, Hsu M, et al. Molecular mechanisms of neuroimmune crosstalk in the pathogenesis of stroke[J]. Int J Mol Sci, 2021, 22(17): 9486. [百度学术]
Hu XM, Leak RK, Shi YJ, et al. Microglial and macrophage polarization—new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1): 56-64. [百度学术]
Wen RX, Shen H, Huang SX, et al. P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis[J]. CNS Neurosci Ther, 2020, 26(4): 416-429. [百度学术]
Rudolph M, Schmeer CW, Günther M, et al. Microglia-mediated phagocytosis of apoptotic nuclei is impaired in the adult murine hippocampus after stroke[J]. Glia, 2021, 69(8): 2006-2022. [百度学术]
Xu SB, Lu JN, Shao AW, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294. [百度学术]
Neher JJ, Emmrich JV, Fricker M, et al. Phagocytosis executes delayed neuronal death after focal brain ischemia[J]. Proc Natl Acad Sci U S A, 2013, 110(43): E4098-E4107. [百度学术]
Cai W, Dai XJ, Chen J, et al. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice[J]. JCI Insight, 2019, 4(20): e131355. [百度学术]
Györffy BA, Kun J, Török G, et al. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning[J]. Proc Natl Acad Sci U S A, 2018, 115(24): 6303-6308. [百度学术]
Surugiu R, Catalin B, Dumbrava D, et al. Intracortical administration of the complement C3 receptor antagonist trifluoroacetate modulates microglia reaction after brain injury[J]. Neural Plast, 2019, 2019: 1071036. [百度学术]
Wang J, Zhang QG, Lu YJ, et al. Ganglioside GD3 is up-regulated in microglia and regulates phagocytosis following global cerebral ischemia[J]. J Neurochem, 2021, 158(3): 737-752. [百度学术]
Qin C, Yang S, Chu YH, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2022, 7(1): 215. [百度学术]
Milde S, Brown GC. Knockout of the P2Y6 receptor prevents peri-infarct neuronal loss after transient, focal ischemia in mouse brain[J]. Int J Mol Sci, 2022, 23(4): 2304. [百度学术]
Yang J, Cao LL, Wang XP, et al. Neuronal extracellular vesicle derived miR-98 prevents salvageable neurons from microglial phagocytosis in acute ischemic stroke[J]. Cell Death Dis, 2021, 12(1): 23. [百度学术]
Sen MK, Mahns DA, Coorssen JR, et al. The roles of microglia and astrocytes in phagocytosis and myelination: insights from the cuprizone model of multiple sclerosis[J]. Glia, 2022, 70(7): 1215-1250. [百度学术]
Hughes AN, Appel B. Microglia phagocytose myelin sheaths to modify developmental myelination[J]. Nat Neurosci, 2020, 23(9): 1055-1066. [百度学术]
Zhang LY, Pan JJ, Mamtilahun M, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion[J]. Theranostics, 2020, 10(1): 74-90. [百度学术]
Liu YL, Wu CF, Hou ZJ, et al. Pseudoginsenoside-F11 accelerates microglial phagocytosis of myelin debris and attenuates cerebral ischemic injury through complement receptor 3[J]. Neuroscience, 2020, 426: 33-49. [百度学术]
Zheng LL, Jia JQ, Chen Y, et al. Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance[J]. J Neuroinflammation, 2022, 19(1): 128. [百度学术]
Andoh M, Koyama R.Comparative review of microglia and monocytes in CNS phagocytosis[J]. Cells, 2021, 10(10): 2555. [百度学术]
Sun H, He XR, Tao X, et al. The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke[J]. J Neuroinflammation, 2020, 17(1): 171. [百度学术]
Alawieh AM, Langley EF, Feng WW, et al. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy[J]. J Neurosci, 2020, 40(20): 4042-4058. [百度学术]
Shi XJ, Luo LL, Wang JX, et al. Stroke subtype-dependent synapse elimination by reactive gliosis in mice[J]. Nat Commun, 2021, 12(1): 6943. [百度学术]
Wicks EE, Ran KR, Kim JE, et al. The translational potential of microglia and monocyte-derived macrophages in ischemic stroke[J]. Front Immunol, 2022, 13: 897022. [百度学术]
Ju H, Park KW, Kim ID, et al. Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia[J]. J Neuroinflammation, 2022, 19(1): 190. [百度学术]
Zhang WT, Zhao JY, Wang RR, et al. Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain[J]. CNS Neurosci Ther, 2019, 25(12): 1329-1342. [百度学术]
Han D, Liu H, Gao Y. The role of peripheral monocytes and macrophages in ischemic stroke[J]. Neurol Sci, 2020, 41(12): 3589-3607. [百度学术]
Ma YY, Li YN, Jiang L, et al. Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice[J]. J Neuroinflammation, 2016, 13: 38. [百度学术]
JrAjmo CT, Vernon DO, Collier L, et al. The spleen contributes to stroke-induced neurodegeneration[J]. J Neurosci Res, 2008, 86(10): 2227-2234. [百度学术]
Ruan CS, Sun LL, Kroshilina A, et al. A novel Tmem119-tdTomato reporter mouse model for studying microglia in the central nervous system[J]. Brain Behav Immun, 2020, 83: 180-191. [百度学术]
Vankriekelsvenne E, Chrzanowski U, Manzhula K, et al. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia[J]. Glia, 2022, 70(6): 1170-1190. [百度学术]
Chu XL, Cao LL, Yu ZY, et al. Hydrogen-rich saline promotes microglia M2 polarization and complement-mediated synapse loss to restore behavioral deficits following hypoxia-ischemic in neonatal mice via AMPK activation[J]. J Neuroinflammation, 2019, 16(1): 104. [百度学术]
Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice[J]. Sci Transl Med, 2018, 10(441): eaao6459. [百度学术]
Park J, Choi Y, Jung E, et al. Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses[J]. EMBO J, 2021, 40(15): e107121. [百度学术]
Xue TF, Ji J, Sun YQ, et al. Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury[J]. Acta Pharm Sin B, 2022, 12(4): 1885-1898. [百度学术]
Naderi Y, Panahi Y, Barreto GE, et al. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review[J]. Neural Regen Res, 2020, 15(5): 773-782. [百度学术]
Wang C, Yue HM, Hu ZC, et al. Microglia mediate forgetting via complement-dependent synaptic elimination[J]. Science, 2020, 367(6478): 688-694. [百度学术]
Sellgren CM, Gracias J, Watmuff B, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning[J]. Nat Neurosci, 2019, 22(3): 374-385. [百度学术]
Han QQ, Shen SY, Chen XR, et al.M inocycline alleviates abnormal microglial phagocytosis of synapses in a mouse model of depression[J]. Neuropharmacology, 2022, 220: 109249. [百度学术]