使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

石榴化学成分及药理活性研究进展

  • 张晶
  • 李论
  • 张梅
  • 胡晓龙
  • 汪豪
中国药科大学中药学院,南京 210009

中图分类号: R284.1

最近更新:2023-09-11

DOI:10.11665/j.issn.1000-5048.2023032101

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

石榴为石榴科石榴属植物,其果皮、种子、花、叶、根均可入药,在我国有着悠久的药用历史。石榴主要化学成分包括鞣质类、黄酮类、萜类、生物碱类、酚酸类、花青素类、脂肪酸类等,具有抗氧化、降血糖、抗炎、抗肿瘤、抗菌等多种药理作用。本文对石榴各药用部位的化学成分和药理作用进行综述,以期为其进一步研究和开发利用提供参考。

石榴(Punica granatum L.)为石榴科(Punicaceae)落叶灌木或乔木,又名安石榴,原产于巴尔干半岛至伊朗及其邻近地区,汉代传入我国,江苏、河南等地种植面积较[

1]。《中华人民共和国药典》(2020年版)收载石榴皮药材,具有涩肠止泻,止血及驱虫等功[2]。本文对近10年国内外学者对于石榴化学成分及生物活性研究进展进行归纳和概述,以期为其进一步综合开发利用提供参考依据。

1 民族药用法

石榴始载于《名医别录》,味甘、酸,无毒,治下利,止漏[

3]。石榴皮、种子、花、叶、根均可作为药用部位,不仅是沿用历史悠久的传统中药,而且在藏族、维吾尔族、苗族等民族均具有广泛的临床应[4]。石榴皮、根、花均被收录于《本草纲目[5]。石榴籽作为藏族习用药材,其味酸、甘,性温,升胃温,助消化,宣[6]。维吾尔族民族药本草著作《拜地 依药书》记载石榴皮、籽、花,二级干寒,味酸涩,止泻止痢、促进创伤愈[7]。苗医学临床应用石榴根治疗久泻久痢、蛔虫,运用石榴花治疗鼻出[8]。石榴干燥全果是蒙医习用药材之一,主治胃炎,消化不良,腹胀[9]。除此之外,《滇南本草》记载石榴叶敷于患处,可用于治疗跌打损[10]

2 化学成分

目前,已从石榴各药用部位分离得到多种化合物,主要包括鞣质类、黄酮类、萜类、生物碱类、酚酸类、花青素类、脂肪酸类等。

2.1 鞣质类

鞣质是一类结构比较复杂的多元酚类化合物,其结构类型主要包括可水解鞣质和缩合鞣质两大类。鞣质是石榴皮中主要特征性化学成分,而石榴其他药用部位鞣质类成分较石榴皮[

2,11]。目前,已从石榴皮、种子、汁、花中发现了30个鞣质类化合[12-18],包括24个逆没食子鞣质类化合物(1 ~ 24),4个缩合鞣质类化合物(27 ~ 30)。Ito[18]在石榴假种皮中分离得到了2个新的可水解鞣质低聚体:pomegraniins A(25)、pomegraniins B(26)。经LC-MS法分析发现,石榴果皮、籽及花中还存在没食子酰葡萄糖苷等没食子鞣质类化合[12,14-15]。具体化合物信息及结构见表1(1 ~ 30)、图1

Table 1  Tannins in different parts of pomegranate
No.CompoundPartaReference
1 Sanguisorbic acid dilactone P [12]
2 Valoneic acid dilactone P [12]
3 Corilagin S, J, P, F [12-14]
4 Punicalin S, J, P [12, 15]
5 Pedunculagin P, J [12, 15-16]
6 Terflavin A P [12]
7 Terflavin D P [12]
8 Castalin P [12]
9 Strictinin A P, J, S [17]
10 Hippomanin A P, J, S [17]
11 Gemin D P, J, S [17]
12 Lagerstannin C P, J [17]
13 Granatin A P [12, 15]
14 Granatin B P, J [12, 15-16]
15 Punicalagin P, J [12, 18]
16 Tellimagrandin I P [12]
17 Casuarinin P, J [12, 17]
18 Punigluconin J [12, 17]
19 PedunculaginII P, J [14-15, 17]
20 Oenothein B J [18]
21 2-O-Galloylpunicalin P [12]
22 Punicacortein C P [18]
23 Eucalbanin B J [18]
24 Eucarpanin T1 J [18]
25 Pomegraniins A J [18]
26 Pomegraniins B J [18]
27 Procyanidin B P, J, S [12-13]
28 (+)-Gallocatechin-(4α→8)-(+)-catechin P [12]
29 (-)-Gallocatechin gallate P [12]
30 (-)-Epigallocatechin gallate P [12]

a The parts include peel (P), seeds (S), juice (J) and flowers(F) of pomegranate

  

Figure 1  Structures of tannins in different parts of pomegranate

2.2 黄酮类

Derakhshan[

19]采用氯化铝比色法测定石榴皮中总黄酮含量约为45 mg/g,远高于籽和汁。石榴皮、种子、汁、花中发现了45个黄酮类化合[13-18,20-22],包括13个黄酮类化合物(31 ~ 43),15个黄酮醇类化合物(44 ~ 58),7个二氢黄酮类化合物(59 ~ 65),3个异黄酮类化合物(66 ~ 68),3个查耳酮类化合物(69 ~ 71),4个黄烷醇类化合物(72 ~ 75)。具体化合物信息及结构见表2(31 ~ 75)和图2

Table 2  Flavonoids in different parts of pomegranate
No.CompoundStructureSubstituentPartReference
31 Luteolin A R1 = R2 = R4 = R7 = H, R3 = R5 = R6 = OH S, J, P, F [14, 16]
32 Luteolin 4'-O-glucoside A R1 = R2 = R4 = R7 = H, R3 = R5 = OH, R6 = O-Glc P [16]
33 Luteolin-3'-O-arabinoside A R1 = R2 = R4 = R7 = H, R3 = R6 = OH, R5 = O-Ara P [16]
34 Cynaroside A R1 = R2 = R4 = R7 = H, R3 = O-β-D-Glc, R5 = R6 = OH F, S, J [14-15]
35 Luteolin 3'-O-glucoside A R1 = R2 = R4 = R7 = H, R3 = R6 = OH, R5 = O-Glc P [16]
36 Lonicerin A R1 = R2 = R4 = R7 = H, R3 = O-neohesperidose, R5 = R6 = OH S, J [14]
37 Apigenin A R1 = R2 = R4 = R5 = R7 = H, R3 = R6 = OH S, J, F [14-15, 20]
38 Cosmosiin A R1 = R2 = R4 = R5 = R7 = H, R3 = O-β-D-Glc, R6 = OH F, S, J [14-15, 20]
39 Apigenin-7-O-neohesperidoside A R1 = R2 = R4 = R5 = R7 = H, R3 = O-neohesperidose, R6 = OH P [18]
40 Oroxin A A R1 = R4 = R5 = R6 = R7 = H, R2 = OH, R3 = O-β-D-Glc S, J [14]
41 Baicalin A R1 = R4 = R5 = R6 = R7 = H, R2 = OH, R3 = O-D-glucuronide S, J [14]
42 Tricetin A R1 = R2 = R4 = H, R3 = R5 = R6 = R7 = OH F [15]
43 Tricin A R1 = R2 = R4 = H, R3 = R6 = OH, R5 = R7 = OCH3 F [15, 20]
44 Morin A R1 = R3 = R4 = R6 = OH, R2 = R5 = R7 = H S, J [14]
45 Phellatin A R1 = R6 = OH, R2 = 3-hydroxy-3-methylbutanyl, R3 = O-β-D-Glc, R4 = R5 = R7 = H J [17]
46 Kaempferol A R1 = R3 = R6 = OH, R2 = R4 = R5 = R7 = H S, J, F [14]
47 Astragalin A R1 = O-β-D-Glc, R2 = R4 = R5 = R7 = H, R3 = R6 = OH F, S, J [14-15]
48 Kaempferol-3-O-glucorhamnoside A R1 = O-glucuronide, R2 = R4 = R5 = R7 = H, R3 = R6 = OH S, J, P [14, 16]
49 Kaempferol-7-O-glucoside A R1 = R6 = OH, R2 = R4 = R5 = R7 = H, R3 = O-Glc S, J [14]
50 Myricetin A R1 = R3 = R5 = R6 = R7 = H, R2 = R4 = H S, J [14]
51 Quercetin A R1 = R3 = R6 = R7 = OH, R2 = R4 = R5 = H S, J, P [14, 18]
52 Isoquercitrin A R1 = O-β-D-Glc, R2 = R4 = R5 = R7 = H, R3 = R6 = OH P, S, J, F [14-15, 18,16]
53 Quercetin-3-O-rhamnoside A R1 = O-Rha, R2 = R4 = R5 = H, R3 = R6 = R7 = OH P [16]
54 Quercetin-7-O-glucoside A R1 = R6 = R7 = OH, R2 = R4 = R5 = H, R3 = O-Glc P [16]
55 Quercetin-3'-O-glucoside A R1 = R3 = R6 = OH, R2 = R4 = R5 = H, R7 = O-Glc P [16]
56 Rutin A R1 = O-rutinose, R2 = R4 = R5 = H, R3 = R6 = R7 = OH S, J, P, F [14, 16, 18, 20]
57 Hyperoside A R1 = O-β-D-Gal, R2 = R4 = R5 = H, R3 = R6 = R7 = OH S, J, P [14, 16]
58 Dihydromyricetin B - S, J [14]
59 Eriodictyol C R1 = R2 = R3 = R4 = OH S, J [14]
60 Naringetol C R1 = R2 = R4 = OH, R3 = H S, J [14]
61 Naringin C R1 = R4 = OH, R2 = O-α-L-Mal-(1→2)-β-D-Mal, R3 = H P [18]
62 Liquiritin C R1 = R3 = H, R2 = OH, R4 = O-β-D-Glc S, J [14]
63 Pinocembrin C R1 = R2 = OH, R3 = R4 = H S, J [14]
64 Hesperetin C R1 = R2 = R3 = R4 = OH P [18]
65 Hesperidine C R1 = R2 = R3 = OH, R4 = O-rutinose P [18]
66 Genistein D R1 = R2 = H S, J [14]
67 Genistin D R1 = β-D-Glc, R2 = H S, J [14]
68 Biochanin A D R1 = H, R2 = CH3 F [21]
69 Naringenin chalcone E R1 = OH, R2 = H S, J [14]
70 Isoliquiritin E R1 = H, R2 = β-D-Glc S, J [14]
71 Phloretin F - S, J [14]
72 Catechin G R = H S, J, P, F [13-14, 16, 22]
73 Gallocatechin G R = OH S, J, P [13-14]
74 Epicatechin H R = H S, J, P [13-14]
75 Epigallocatechin H R = OH S, J, P [13-14]

  

Figure 2  Nuclear structures of flavonoids in different parts of pomegranate

2.3 萜 类

石榴种子、汁、花中已发现了10个萜类化合[

13,18,20-21],包括1个裂环烯醚萜苷(76),1个麝子油烷型单环倍半萜(77),2个桉叶烷型双环倍半萜(78,79),2个乌苏烷型五环三萜(80,81),1个羽扇豆烷型五环三萜(82),3个齐墩果烷型五环三萜(83 ~ 85)。具体化合物信息及结构见表3(76 ~ 85)、图3

Table 3  Terpenoids in different parts of pomegranate
No.CompoundPartReference
76 Oleuropein S, J [13]
77 Abscisic acid S, J [13]
78 Atractylenolide I S, J [13]
79 α-Cyperone S, J [13]
80 Corosolic acid S, J [13]
81 Ursolic acid S, J, F [18, 20]
82 Betulonic acid S, J [13]
83 Maslinic acid S, J [13]
84 Oleanolic acid S, J, F [13, 20]
85 Taraxerol F [21]

  

Figure 3  Structures of terpenoids in different parts of pomegranate

2.4 生物碱类

石榴皮中已分离得到了7个生物碱类化合[

17,23-24],主要包括1个单萜类生物碱(86),2个吡咯类生物碱(87, 88),4个哌啶类生物碱(89 ~ 92)。Li[13]通过LC-MS法从石榴籽中共发现了5个生物碱类化合物,包括1个吡啶类生物碱(93),2个吲哚类生物碱(94, 95),2个小檗碱类化合物(96, 97)。具体化合物信息及结构见表4(86 ~ 97)、图4

Table 4  Alkaloids in different parts of pomegranate
No.CompoundPartReference
86 Trigonelline S, J [13]
87 Indigo S, J [13]
88 Indirubin S, J [13]
89 Palmatine S, J [13]
90 Berberine S, J [13]
91 Caffeine P [17]
92 Hygrine P [23]
93 Norhygrine P [23]
94 Pseudopelletierine P [23]
95 Norpseudopelletierine P [24]
96 Pelletierine P [24]
97 N-Methylpelletierine P [24]

  

Figure 4  Structures of alkaloids in different parts of pomegranate

2.5 酚酸类

目前,从石榴皮、种子、汁、花中已发现23个酚酸类化合物(98 ~ 120[

12-15,17,20,22],主要包括以苯甲酸为母核的C6-C1型化合物、以肉桂酸为母核的C6-C3型化合物及其衍生物。其中,没食子酸(gallic acid)(115)和鞣花酸(ellagic acid)(118)是石榴皮、籽、花中存在的主要酚酸类化合[12-14,19-20]。具体化合物信息见表5(98 ~ 120)。

Table 5  Phenolic acids in different parts of pomegranate
No.CompoundPartReference
98 2S, 3S, 4S-Trihydroxypentanoic acid F [20]
99 Cinnamic acid S, J, P [13, 17]
100 4-Hydroxycinnamic acid S, J, P [13, 17, 22]
101 Ferulic acid S, J, P [13, 17, 22]
102 Methyl ferulate S, J [13]
103 Isoferulic acid S, J, P [13, 17]
104 Sinapic acid S, J [13]
105 Caffeic acid S, J, P [15, 17, 22]
106 Caffeic acid phenethyl ester S, J [13]
107 Salicylic acid S, J, P [13, 17]
108 2, 5-Dihydroxybenzoic acid S, J, P [13, 17]
109 3, 4-Dihydroxybenzoic acid S, J [13]
110 Vanillic acid P [17, 22]
111 Brevifolin F [14]
112 Brevifolincarboxylic acid S, J, F [13-14]
113 Methyl brevifolincarboxylate F [14]
114 Ethyl brevifolincarboxylate F [14]
115 Gallic acid P, S, J, F [12-14, 20]
116 Methyl gallate S, J, P [12-13]
117 Ethyl gallate F 14]
118 Ellagic acid S, J, P, F [12-14, 19]
119 Chlorogenic acid P [17, 22]
120 Rosmarinic acid P [22]

2.6 花青素类

石榴汁、花和皮中富含花青素类成分。目前,已发现了16个花青素类化合[

14,16,25-27],包括2个锦葵色素类(121,122),1个矮牵牛素类(123),3个芍药素类(124 ~ 126),4个矢车菊素类(127 ~ 130), 4个飞燕草素类(131 ~ 134),3个天竺葵素类(135 ~137)。除此之外,Gómez-Caravaca[16]通过HPLC-DAD-ESI-MS技术发现了石榴汁中还存在花青素-黄烷醇复合型化合物。具体化合物信息见表6(121 ~ 137)。

Table 6  Anthocyanins in different parts of pomegranate
No.CompoundPartReference
121 Malvidin-3-O-glucoside J [25]
122 Malvidin-3-O-(6″-acetyl)-glucoside P, J [25]
123 Petunidin-3-O-glucoside J [25]
124 Peonidin-3-O-glucoside P [25]
125 Peonidin-3-O-(6″-malonyl)-glucoside P [25]
126 Peonidin-3-O-(6″-p-coumaroyl)-glucoside J [25]
127 Cyanidin-3-O-galactoside J [26]
128 Cyanidin-3-O-glucoside J, F [14, 16, 26]
129 Cyanidin-3-O-rutinoside J [16]
130 Cyanidin-3,5-O-diglucoside J, F [14, 16, 26]
131 Delphinidin-3-O-glucoside J, F [14, 16, 26]
132 Delphinidin-3-O-caffeoyl J [26]
133 Delphinidin-3,5-diglucoside J [16, 27]
134 Delphinidin-3-O-caffeoyl-5-O-glucoside J [26]
135 Pelargonidin-3-glucoside J, F [14, 16, 27]
136 Pelargonidin-3-O-caffeoyl-5-O-glucoside J [26]
137 Pelargonidin-3, 5-diglucoside J, F [14, 16, 27]

2.7 脂肪酸类

目前,从石榴种子、皮、花中已发现了16个脂肪酸类化合[

20,28-30],包括7个不饱和脂肪酸类,9个饱和脂肪酸类。石榴种子中富含脂肪酸类化合物,石榴籽油主要由不饱和脂肪酸组成,石榴酸(punicic acid)是石榴籽油中主要脂肪酸,有研究通过GC-MS法测定其含量为74% ~ 85%[28,31]

2.8 其他类

除上述化学成分外,石榴种子、汁、花中还存在甾醇类化合[

20-21,27]。经LC-MS分析,石榴籽中存在核苷类、香豆素类、醌类化合[13]。此外,Ito[18]在石榴假种皮中分离得到了1个新的木脂素类化合物pomegralignan。

3 药理活性

现代药理学研究表明,石榴各药用部位具有抗氧化、降血糖、抗炎、抗动脉粥样硬化作用、抗肿瘤作用、抗菌作用等。

3.1 抗氧化作用

Chang[

32]发现石榴皮中所含的安石榴苷(punicalagin)具有较好的清除DPPH(1,1-二苯基-2-三硝基苯肼)自由基和·OH的能力,IC50分别为101.0 和227.0 μg/mL。Zu[33]发现石榴皮超微粉可以显著提高大鼠血清中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)的活力,并有效减少血清中丙二醛(MDA)的量,提高大鼠体内血清的抗氧化能力。实验研究表明,石榴皮80%乙醇提取物的抗氧化活性和总酚、总黄酮和黄酮醇的含量均高于种子和果汁,进一步分析表明,其抗氧化活性与总酚含量呈显著正相[34]。Yoshime[35]发现石榴籽油对DPPH自由基和ABTS(2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸)自由基的清除作用与其浓度呈正相关,EC50分别为8.8和5.9 mg/mL。Xing[36]发现石榴叶多酚对亚硝酸盐、超氧阴离子自由基、·OH均具有清除作用,其清除率与提取物浓度和纯度呈正相关。

3.2 抗糖尿病作用

Liu[

37]发现石榴皮中安石榴苷可与α-葡萄糖苷酶结合形成酶-抑制物(EI)复合体,同时,安石榴苷还可以与EI复合体结合,进而形成酶-底物-抑制物复合体,其对α-葡萄糖苷酶有抑制作用。Kam[38]发现石榴花甲醇提取物体外抑制α-淀粉酶和α-葡萄糖苷酶活性,而石榴皮甲醇提取物选择性抑制α-葡萄糖苷酶活性,除此之外,没食子酸和鞣花酸也表现出对α-葡萄糖苷酶的选择性抑制。Zhang[39]发现石榴皮多酚能够改善氧化应激并促进转录因子FoxO1向细胞核外的易位,使胰岛素合成增加,从而治疗高脂饮食和链脲佐菌素(STZ)诱导的大鼠胰腺组织损伤和胰岛素分泌不足。实验研究表明,市售石榴果实提取物、安石榴苷和鞣花酸通过清除甲基乙二醛抑制AGEs(晚期糖基化终末产物)显示出比阳性对照二甲双胍更强的体外抗糖基化作[40]。Gósciniak[41]发现石榴花提取物具有抑制α-淀粉酶和α-葡萄糖苷酶的功效,该提取物抑制α-葡萄糖苷酶的能力优于阿卡波糖,而抑制α-淀粉酶的能力弱于阿卡波糖。

3.3 抗炎作用

Wu[

42]发现在DDS(4,4′-二氨基二苯砜)诱导的小鼠炎症模型中,石榴汁显著降低促炎因子IL-1β、IL-6、TNF-α、IFN-γ的表达,增加抗炎因子表达,并可降低氧化应激水平及炎性标志物MPO(髓过氧化物酶)水平,从而改善因炎症反应造成的结肠上皮结构损伤。Lee[43]发现石榴中安石榴苷、安石榴林(punicalin)和石榴皮素B(granatin B)在脂多糖(LPS)诱导的RAW 264.7巨噬细胞中抑制NO的产生和诱导型一氧化氮合酶(iNOS)的表达,显著降低了LPS诱导的小鼠足趾肿胀。Marques[44]发现石榴叶70%乙醇提取物降低LPS诱导急性腹膜炎大鼠体内TNF-α水平并减少大鼠腹膜白细胞数量,发挥抗炎作用。

3.4 抗动脉粥样硬化作用

Benchagra[

45]发现石榴皮、石榴假种皮70%甲醇提取物均显著增加血浆血清对氧磷酶(PON1)的活性和PON1蛋白表达,还可以通过抑制脂蛋白氧化、减少过氧化氢含量,以此预防动脉粥样硬化和心血管疾病的发生。Anwaier[46]发现石榴皮60%乙醇提取物安石榴苷通过抑制低振荡剪切应激(OSS)诱导的大鼠主动脉狭窄后区域的内皮细胞中Smad1/5的活化改善其功能障碍。此外,实验研究表明,石榴皮乙醇提取物和安石榴苷能抑制促炎刺激下大鼠血管平滑肌细胞的增殖,从而抑制动脉粥样硬化。Aharoni[47]发现石榴汁及其多酚剂量依赖性地抑制巨噬细胞炎症反应,并促进巨噬细胞由M1促炎表型向M2抗炎表型转变,石榴汁摄入可能抑制主动脉中进行性促炎状态以及动脉粥样硬化的发展。

3.5 抗肿瘤作用

Benchagra[

45]发现石榴皮、石榴籽70%甲醇提取物均能降低J82人膀胱癌细胞中硫代巴比妥酸活性物质含量,且以剂量依赖的方式显著降低J82细胞中活性氧(ROS)产生,抑制了应激状态下J82细胞的脂质过氧化。Eskandari[48]发现鞣花酸剂量依赖性地增加人前列腺癌细胞(PC3)中IL-6基因表达和其分泌水平,并减少STAT3(signal transducer and activator of transcription 3)、ERK(extracellular signal-regulated kinase)等细胞信号蛋白磷酸化,从而减少细胞增殖。Mandal[49]发现石榴乳剂下调DMBA(7,12-二甲基苯并[α]蒽)诱导的大鼠乳腺肿瘤中α雌激素受体(ER-α)、β雌激素受体(ER-β)和细胞周期蛋白D1的过度表达,降低ER-α/ER-β的比值以及β-连环蛋白的表达水平,同时阻断细胞质积累和核易位而发挥其抗肿瘤细胞增殖和促凋亡作用。

3.6 抗菌作用

Song[

50]发现石榴皮鞣质对革兰阳性菌具有较强的抗菌作用,实验研究表明,石榴皮鞣质能够抑制菌体蛋白质合成,其通过破坏菌体的细胞壁和细胞膜结构,改变菌体正常的渗透性抑制金黄色葡萄球菌(S.aureus)。实验研究表明,石榴皮70%甲醇粗提取物对黄曲霉(A.flavus)、轮枝镰孢菌(F.verticillioides)、霉心病菌(A.alternata)和灰霉菌(B. cinerea)的生长有抑制作用,且提取物中鞣花酸含量对其抗菌活性有显著影[51]。Gullon[52]发现石榴皮生药粉对单核细胞增生李斯特菌(L.monocytogenes)、李斯特菌(L.innocua)、金黄色葡萄球菌、铜绿假单胞菌(Pseudomonas aeruginosa)、大肠埃希菌(Escherichia coli)和沙门氏菌(Salmonella)均有抗菌活性,最低抑菌浓度为20 mg/mL至50 mg/mL不等。Wu[53]发现石榴花乙醇提取物能够抑制变形链球菌(S.mutans)的生长,且抑菌能力与提取物浓度呈正相关,提示石榴花提取物的抑菌作用与其多酚成分有关。

3.7 其他作用

(1)驱虫作用:Meng[

54]发明了一种含有石榴根皮的中药组合物,具有预防和治疗胆道蛔虫、带绦虫或绦虫感染引起的急慢性胆囊炎作用。(2)促进脂质代谢:Kearns[55]发现安石榴苷通过活化AMPK/ACC途径减少脂肪生成,加速脂肪降解,从而改善高脂饮食诱导的肥胖小鼠肝脏脂质沉积。(3)抗病毒作用:Salles[56]发现石榴皮乙醇提取物及富含安石榴苷的流份具有抗马雅罗(Mayaro)病毒活性,实验研究表明,石榴叶乙醇提取物具有显著的抗马雅罗病毒活性,约为98%。

4 结语与展望

石榴药材资源丰富、应用广泛,其果皮、种子、花、叶、根均可入药, 但中药和民族药对石榴的应用存在差异。首先,中药主要以石榴皮作为药用部[

5],而民族药对石榴籽、花、根等药用部位应用广泛。其次,藏医和蒙医应用石榴治疗消化不良、胃炎等疾[6,9],而中医相关应用很少。石榴各药用部位主要化学成分包括鞣质类、酚酸类、黄酮类等,具有抗氧化、抗炎、降血糖等多种药理作用。石榴具有涩肠止泻功效,可用于治疗腹泻、痢疾等,腹泻的常见病因包括细菌感染、肠道炎症[57],同时现代药理学研究发现石榴具有抗炎抗菌作用,表明中药传统功效与现代药理作用之间存在一定关[58-59]

近年来国内外对石榴各药用部位的研究主要集中于石榴皮、籽、花,而对石榴叶和根的研究较少;另一方面,尽管石榴多样的药理活性已得到广泛验证,但大多研究应用混合提取物验证其治疗作用,对单体化合物的活性研究较少。此外,对石榴各药用部位的药理活性研究多为体外筛选,其药效物质与作用机制的关系有待更深层次的探索。本文对石榴各药用部位的民族药用法、化学成分及药理作用进行综述,以期为阐明其药效物质基础提供科学依据,为其进一步综合开发利用提供参考。

References

1

Editorial Board of the Flora of China. Flora of China (中国植物志) [S]. Beijing: Science Pres, 2004: 120-121. [百度学术] 

2

Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia: part 1 (中华人民共和国药典: 一部)[S]. Beijing: China Medical Science Press, 2020: 97. [百度学术] 

3

Tao HJ. Mingyi Bielu (Compiled Edition) (名医别录:辑校本)][M]. Shang ZJ, Compilation. Beijing: China Press of Traditional Chinese Medicine, 2013: 3. [百度学术] 

4

Ma MF, Zhang DD, Zhang B. Research progress on chemical constituents and pharmacological effects of pomegranate seeds[J]. Food Drug (食品与药品), 2020, 22(5): 434-437. [百度学术] 

5

Li SZ. Compendium of Materia Medica(本草纲目)[M]. Xie QT, Compilation. Beijing: China International Broadcasting Audio Visual Press, 2006: 172-173. [百度学术] 

6

Luo SD. Newly revised Jingzhu Materia Medica (新修晶珠本草)[M].Sichuan: Sichuan Science and Technology Press, 2004: 465. [百度学术] 

7

Editorial Board of Chinese Materia Medica of National Administration of Traditional Chinese Medicine. Chinese Materia Medica: Uyghur medicinal roll (中华本草:维吾尔药卷)[M]. Shanghai: Shanghai Scientific & Technical Publishers. 2005: 118-119. [百度学术] 

8

Editorial Board of Chinese Materia Medica of National Administration of Traditional Chinese Medicine. Chinese Materia Medica: Miao medicine roll (中华本草:苗药卷)[M]. Guiyang: Guizhou Science and Technology Press, 2005: 154-156. [百度学术] 

9

Editorial Board of Chinese Materia Medica of National Administration of Traditional Chinese Medicine. Chinese Materia Medica: Mongolian Medicine Roll (中华本草:蒙药卷)[M]. Shanghai: Shanghai Scientific & Technical Publisher, 2004: 154-156. [百度学术] 

10

Nanjing University of Traditional Chinese Medicine. Dictionary of Traditional Chinese Medicine (中药大辞典) [M]. 2nd ed. Shanghai: Shanghai Scientific & Technical Publisher, 2006: 858. [百度学术] 

11

Li QL, Zhou J, Wu Y, et al. Effect of tannins from Punica granatum L. on the expression of nephrin and podocin in the podocytes of rats with passive heymann nephritis[J]. Chin Pharm J (中国药学杂志), 2021, 56(5): 351-358. [百度学术] 

12

Abdulla R, Mansur S, Lai HZ, et al. Qualitative analysis of polyphenols in macroporous resin pretreated pomegranate husk extract by HPLC-QTOF-MS[J]. Phytochem Anal, 2017, 28(5): 465-473. [百度学术] 

13

Li GP, Chen M, Chen J, et al. Chemical composition analysis of pomegranate seeds based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry[J]. J Pharm Biomed Anal, 2020, 187(1): 9. [百度学术] 

14

Liu YQ and Seeram NP. Liquid chromatography coupled with time-of-flight tandem mass spectrometry for comprehensive phenolic characterization of pomegranate fruit and flower extracts used as ingredients in botanical dietary supplements[J]. J Sep Sci, 2018, 41(15): 3022-3033. [百度学术] 

15

Liu YC, Dai YP, Wang BL, et al. Rapid analysis of tannins from pomegranate peel based on UPLC-Quadrupole/Exactive Orbitrap mass combined with diagnostic ions filter [J]. Chin Arch Tradit Chin Med (中华中医药学刊), 2023, 41(5): 71-79. [百度学术] 

16

Gómez-Caravaca AM, Verardo V, Toselli M, et al. Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS[J]. J Agric Food Chem, 2013, 61(22): 5328-5337. [百度学术] 

17

El-Hadary AE, Ramadan MF. Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract[J]. J Food Biochem, 2019, 43(4): e12803. [百度学术] 

18

Ito H, Li P, Koreishi M, et al. Ellagitannin oligomers and a neolignan from pomegranate arils and their inhibitory effects on the formation of advanced glycation end products[J]. Food Chem, 2014, 152: 323-330. [百度学术] 

19

Derakhshan Z, Ferrante M, Tadi M, et al. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds[J]. Food Chem Toxicol, 2018, 114: 108-111. [百度学术] 

20

Yang YX, Yan FL, Wang X. Chemical constituents from Punica granatum flowers[J]. J China Med Mater (中药材), 2014, 37(5): 804-807. [百度学术] 

21

Zhou CH, Jin C, Zhao YH, et al. Chemical constituents from the flowers of Punica granatum[J]. Chin Tradit Pat Med (中成药), 2020, 42(1): 102-106. [百度学术] 

22

Cruz-Valenzuela MR, Ayala-Soto RE, Ayala-Zavala JF, et al. Pomegranate (Punica granatum L. ) peel extracts as antimicrobial and antioxidant additives used in alfalfa sprouts[J]. Foods, 2022, 11(17): 2588. [百度学术] 

23

Ge SS, Duo L, Wang JQ, et al. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status[J]. J Ethnopharmacol, 2021, 271: 113877. [百度学术] 

24

Neuhöfer H, Witte L, Gorunović M, et al. Alkaloids in the bark of Punica granatum L. (pomegranate) from Yugoslavia[J]. Pharmazie, 1993, 48: 389-391. [百度学术] 

25

Yisimayili Z, Chao Z. A review on phytochemicals, metabolic profiles and pharmacokinetics studies of the different parts (juice, seeds, peel, flowers, leaves and bark) of pomegranate (Punica granatum L. ) [J]. Food Chem, 2022, 395: 133600. [百度学术] 

26

Topalović A, Knežević M, Gačnik S, et al. Detailed chemical composition of juice from autochthonous pomegranate genotypes (Punica granatum L.) grown in different locations in Montenegro[J]. Food Chem, 2020, 330: 127261. [百度学术] 

27

Labbé M, Ulloa PA, López F, et al. Characterization of chemical compositions and bioactive compounds in juices from pomegranates (‘Wonderful’, ‘Chaca’ and ‘Codpa’) at different maturity stages[J]. Chilean J Agric Res, 2016, 76(4): 479-486. [百度学术] 

28

Ün İ, Ün ŞŞ, Tanrıkulu N, et al. Assessing the concentration of conjugated fatty acids within pomegranate seed oil using quantitative nuclear magnetic resonance (qNMR)[J]. Phytochem Anal, 2022, 33(3): 452-459. [百度学术] 

29

Cao F, Li HT, Zhang BY. Analysis of fatty acid in peel of Punica granatum by HPLC with pre-column derivatization[J]. West China J Pharm Sci (华西药学杂志), 2018, 33(4): 406-409. [百度学术] 

30

Al Juhaimi F, Özcan MM, Ghafoor K. Characterization of pomegranate (Punica granatum L. ) seed and oils[J]. Eur J Lipid Sci Technol, 2017, 119(10): 1700074. [百度学术] 

31

Verardo V, Garcia-Salas P, Baldi E, et al. Pomegranate seeds as a source of nutraceutical oil naturally rich in bioactive lipids[J]. Food Res Int, 2014, 65: 445-452. [百度学术] 

32

Chang ZY, Liu GH, Gulibahar K, et al. Optimization of extraction for punicalagin from pomegranate peel by response surface methodology and its antioxidant activity[J]. Food Res Dev (食品研究与开发), 2020, 41(22): 100-107. [百度学术] 

33

Zu YG, Zhong C, Zhao XH, et al. Optimization of processing technology and study on antioxidant activity in vivo of superfine powder of Granati Pericarpium[J]. Chin Tradit Herb Drugs (中草药), 2015, 46(10): 1454-1459. [百度学术] 

34

Derakhshan Z, Ferrante M, Tadi M, et al. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds[J]. Food Chem Toxicol, 2018, 114: 108-111. [百度学术] 

35

Yoshime LT, de Melo ILP, Sattler JAG, et al. Bioactive compounds and the antioxidant capacities of seed oils from pomegranate (Punica granatum L.) and bitter gourd (Momordica charantia L.) [J]. Food Sci Technol, 2019, 39(suppl 2): 571-580. [百度学术] 

36

Xing J, Lu WJ, Zhao YX, et al. Purification and antioxidant activity of polyphenols from Punica granatum L.[J]. J Nanjing Norm Univ (Nat Sci Ed) (南京师大学报 自然科学版), 2015, 38(3): 84-90. [百度学术] 

37

Liu Y, Kong KW, Wu DT, et al. Pomegranate peel-derived punicalagin: Ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism[J]. Food Chem, 2022, 374: 131635. [百度学术] 

38

Kam A, Li KM, Razmovski-Naumovski V, et al. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α-amylase and α-glucosidase[J]. Phytother Res, 2013, 27(11): 1614-1620. [百度学术] 

39

Zhang WM, Hou C, Du L, et al. Protective action of pomegranate peel polyphenols in type 2 diabetic rats via the translocation of Nrf2 and FoxO1 regulated by the PI3K/Akt pathway[J]. Food Funct, 2021, 12(22): 11408-11419. [百度学术] 

40

Liu WX, Ma H, Frost L, et al. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species[J]. Food Funct, 2014, 5(11): 2996-3004. [百度学术] 

41

Gościniak A, Bazan-Woźniak A, Pietrzak R, et al. Pomegranate flower extract-the health-promoting properties optimized by application of the box-behnken design[J]. Molecules, 2022, 27(19): 6616. [百度学术] 

42

Wu SJ, Wang XJ, Zhang WS, et al. Effects of pomegranate juice on DSS-induced ulcerative colitis in mice[J]. Food Sci (食品科学), 2023, 44(13): 88-96. [百度学术] 

43

Lee CJ, Chen LG, Liang WL, et al. Anti-inflammatory effects of Punica granatum Linn. in vitro and in vivo[J]. Food Chem, 2010, 118(2): 315-322. [百度学术] 

44

Marques LC, Pinheiro AJ, Araújo JG, et al. Anti-inflammatory effects of a pomegranate leaf extract in LPS-induced peritonitis[J]. Planta Med, 2016, 82(17): 1463-1467. [百度学术] 

45

Benchagra L, Berrougui H, Islam MO, et al. Antioxidant effect of Moroccan pomegranate (Punica granatum L.sefri variety) extracts rich in punicalagin against the oxidative stress process[J]. Foods, 2021, 10(9): 2219. [百度学术] 

46

Anwaier G, Lian G, Ma GZ, et al. Punicalagin attenuates disturbed flow-induced vascular dysfunction by inhibiting force-specific activation of Smad1/5[J]. Front Cell Dev Biol, 2021, 9: 697539. [百度学术] 

47

Aharoni S, Lati Y, Aviram M, et al. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state[J]. Biofactors, 2015, 41(1): 44-51. [百度学术] 

48

Eskandari E, Heidarian E, Amini SA, et al. Evaluating the effects of ellagic acid on pSTAT3, pAKT, and pERK1/2 signaling pathways in prostate cancer PC3 cells[J]. J Cancer Res Ther, 2016, 12(4): 1266-1271. [百度学术] 

49

Mandal A, Bishayee A. Mechanism of breast cancer preventive action of pomegranate: disruption of estrogen receptor and Wnt/β-catenin signaling pathways[J]. Molecules, 2015, 20(12): 22315-22328. [百度学术] 

50

Song CQ, Zhou BH, Yi HL, et al. Antibacterial activity of tannins from Pericarpium Granati(TPG) and its antibacterial mechanism against Staphylococcus aureus[J]. Chin J Hosp Pharm (中国医院药学杂志), 2016, 36(4): 259-265. [百度学术] 

51

Rosas-Burgos EC, Burgos-Hernández A, Noguera-Artiaga L, et al. Antimicrobial activity of pomegranate peel extracts as affected by cultivar[J]. J Sci Food Agric, 2017, 97(3): 802-810. [百度学术] 

52

Gullon B, Pintado ME, Pérez-Álvarez JA, et al. Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (Punica granatum) flour obtained from co-product of juice extraction[J]. Food Control, 2016, 59: 94-98. [百度学术] 

53

Wu WX, Jiang S, Liu MM, et al. Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L. ) flowers and its biological activities[J]. Ultrason Sonochem, 2021, 80: 105833. [百度学术] 

54

Meng LQ. A traditional Chinese medicine combination for treating cholecystitis: 105106516A[P]. 2015-12-02 [2023-03-23]. [百度学术] 

55

Kearns R, Chang ZY, Niu RH, et al. Punicalagin inhibits hepatic lipid deposition in obese mice via the AMPK/ACC pathway[J]. China J Chin Mater Med (中国中药杂志), 2023, 48(7):1751-1759. [百度学术] 

56

Salles TS, Meneses MDF, Caldas LA, et al. Virucidal and antiviral activities of pomegranate (Punica granatum) extract against the mosquito-borne Mayaro virus[J]. Parasit Vectors, 2021, 14(1): 443. [百度学术] 

57

Zhang LJ, Jiang Y, Liu BH, et al. Advances in the etiology of chronic diarrhea in adults[J]. Chin Gen Pract (中国全科医学), 2019(22): 2760-2765. [百度学术] 

58

Ren JG, Wang DZ, Lei L, et al. Preliminary analysis on relationship between traditional efficacy of Chinese medicine and modern pharmacological action[J]. China J Chin Mater Med (中国中药杂志), 2017, 42(10): 1979-1983. [百度学术] 

59

Lü) GY, Yan MQ, Chen SH. Review of pharmacological activities of Dendrobium officinale based on traditional functions[J]. China J Chin Mater Med (中国中药杂志), 2013, 38(4): 489-493. [百度学术]