摘要
石榴为石榴科石榴属植物,其果皮、种子、花、叶、根均可入药,在我国有着悠久的药用历史。石榴主要化学成分包括鞣质类、黄酮类、萜类、生物碱类、酚酸类、花青素类、脂肪酸类等,具有抗氧化、降血糖、抗炎、抗肿瘤、抗菌等多种药理作用。本文对石榴各药用部位的化学成分和药理作用进行综述,以期为其进一步研究和开发利用提供参考。
石榴(Punica granatum L.)为石榴科(Punicaceae)落叶灌木或乔木,又名安石榴,原产于巴尔干半岛至伊朗及其邻近地区,汉代传入我国,江苏、河南等地种植面积较
石榴始载于《名医别录》,味甘、酸,无毒,治下利,止漏
目前,已从石榴各药用部位分离得到多种化合物,主要包括鞣质类、黄酮类、萜类、生物碱类、酚酸类、花青素类、脂肪酸类等。
鞣质是一类结构比较复杂的多元酚类化合物,其结构类型主要包括可水解鞣质和缩合鞣质两大类。鞣质是石榴皮中主要特征性化学成分,而石榴其他药用部位鞣质类成分较石榴皮
No. | Compound | Par | Reference |
---|---|---|---|
1 | Sanguisorbic acid dilactone | P |
[ |
2 | Valoneic acid dilactone | P |
[ |
3 | Corilagin | S, J, P, F |
[ |
4 | Punicalin | S, J, P |
[ |
5 | Pedunculagin | P, J |
[ |
6 | Terflavin A | P |
[ |
7 | Terflavin D | P |
[ |
8 | Castalin | P |
[ |
9 | Strictinin A | P, J, S |
[ |
10 | Hippomanin A | P, J, S |
[ |
11 | Gemin D | P, J, S |
[ |
12 | Lagerstannin C | P, J |
[ |
13 | Granatin A | P |
[ |
14 | Granatin B | P, J |
[ |
15 | Punicalagin | P, J |
[ |
16 | Tellimagrandin I | P |
[ |
17 | Casuarinin | P, J |
[ |
18 | Punigluconin | J |
[ |
19 | PedunculaginII | P, J |
[ |
20 | Oenothein B | J |
[ |
21 | 2-O-Galloylpunicalin | P |
[ |
22 | Punicacortein C | P |
[ |
23 | Eucalbanin B | J |
[ |
24 | Eucarpanin T1 | J |
[ |
25 | Pomegraniins A | J |
[ |
26 | Pomegraniins B | J |
[ |
27 | Procyanidin B | P, J, S |
[ |
28 | (+)-Gallocatechin-(4α→8)-(+)-catechin | P |
[ |
29 | (-)-Gallocatechin gallate | P |
[ |
30 | (-)-Epigallocatechin gallate | P |
[ |
a The parts include peel (P), seeds (S), juice (J) and flowers(F) of pomegranate

Figure 1 Structures of tannins in different parts of pomegranate
Derakhshan
No. | Compound | Structure | Substituent | Part | Reference |
---|---|---|---|---|---|
31 | Luteolin | A | R1 = R2 = R4 = R7 = H, R3 = R5 = R6 = OH | S, J, P, F |
[ |
32 | Luteolin 4'-O-glucoside | A | R1 = R2 = R4 = R7 = H, R3 = R5 = OH, R6 = O-Glc | P |
[ |
33 | Luteolin-3'-O-arabinoside | A | R1 = R2 = R4 = R7 = H, R3 = R6 = OH, R5 = O-Ara | P |
[ |
34 | Cynaroside | A | R1 = R2 = R4 = R7 = H, R3 = O-β-D-Glc, R5 = R6 = OH | F, S, J |
[ |
35 | Luteolin 3'-O-glucoside | A | R1 = R2 = R4 = R7 = H, R3 = R6 = OH, R5 = O-Glc | P |
[ |
36 | Lonicerin | A | R1 = R2 = R4 = R7 = H, R3 = O-neohesperidose, R5 = R6 = OH | S, J |
[ |
37 | Apigenin | A | R1 = R2 = R4 = R5 = R7 = H, R3 = R6 = OH | S, J, F |
[ |
38 | Cosmosiin | A | R1 = R2 = R4 = R5 = R7 = H, R3 = O-β-D-Glc, R6 = OH | F, S, J |
[ |
39 | Apigenin-7-O-neohesperidoside | A | R1 = R2 = R4 = R5 = R7 = H, R3 = O-neohesperidose, R6 = OH | P |
[ |
40 | Oroxin A | A | R1 = R4 = R5 = R6 = R7 = H, R2 = OH, R3 = O-β-D-Glc | S, J |
[ |
41 | Baicalin | A | R1 = R4 = R5 = R6 = R7 = H, R2 = OH, R3 = O-D-glucuronide | S, J |
[ |
42 | Tricetin | A | R1 = R2 = R4 = H, R3 = R5 = R6 = R7 = OH | F |
[ |
43 | Tricin | A | R1 = R2 = R4 = H, R3 = R6 = OH, R5 = R7 = OCH3 | F |
[ |
44 | Morin | A | R1 = R3 = R4 = R6 = OH, R2 = R5 = R7 = H | S, J |
[ |
45 | Phellatin | A | R1 = R6 = OH, R2 = 3-hydroxy-3-methylbutanyl, R3 = O-β-D-Glc, R4 = R5 = R7 = H | J |
[ |
46 | Kaempferol | A | R1 = R3 = R6 = OH, R2 = R4 = R5 = R7 = H | S, J, F |
[ |
47 | Astragalin | A | R1 = O-β-D-Glc, R2 = R4 = R5 = R7 = H, R3 = R6 = OH | F, S, J |
[ |
48 | Kaempferol-3-O-glucorhamnoside | A | R1 = O-glucuronide, R2 = R4 = R5 = R7 = H, R3 = R6 = OH | S, J, P |
[ |
49 | Kaempferol-7-O-glucoside | A | R1 = R6 = OH, R2 = R4 = R5 = R7 = H, R3 = O-Glc | S, J |
[ |
50 | Myricetin | A | R1 = R3 = R5 = R6 = R7 = H, R2 = R4 = H | S, J |
[ |
51 | Quercetin | A | R1 = R3 = R6 = R7 = OH, R2 = R4 = R5 = H | S, J, P |
[ |
52 | Isoquercitrin | A | R1 = O-β-D-Glc, R2 = R4 = R5 = R7 = H, R3 = R6 = OH | P, S, J, F | [14-15, 18,16] |
53 | Quercetin-3-O-rhamnoside | A | R1 = O-Rha, R2 = R4 = R5 = H, R3 = R6 = R7 = OH | P |
[ |
54 | Quercetin-7-O-glucoside | A | R1 = R6 = R7 = OH, R2 = R4 = R5 = H, R3 = O-Glc | P |
[ |
55 | Quercetin-3'-O-glucoside | A | R1 = R3 = R6 = OH, R2 = R4 = R5 = H, R7 = O-Glc | P |
[ |
56 | Rutin | A | R1 = O-rutinose, R2 = R4 = R5 = H, R3 = R6 = R7 = OH | S, J, P, F |
[ |
57 | Hyperoside | A | R1 = O-β-D-Gal, R2 = R4 = R5 = H, R3 = R6 = R7 = OH | S, J, P |
[ |
58 | Dihydromyricetin | B | - | S, J |
[ |
59 | Eriodictyol | C | R1 = R2 = R3 = R4 = OH | S, J |
[ |
60 | Naringetol | C | R1 = R2 = R4 = OH, R3 = H | S, J |
[ |
61 | Naringin | C | R1 = R4 = OH, R2 = O-α-L-Mal-(1→2)-β-D-Mal, R3 = H | P |
[ |
62 | Liquiritin | C | R1 = R3 = H, R2 = OH, R4 = O-β-D-Glc | S, J |
[ |
63 | Pinocembrin | C | R1 = R2 = OH, R3 = R4 = H | S, J |
[ |
64 | Hesperetin | C | R1 = R2 = R3 = R4 = OH | P |
[ |
65 | Hesperidine | C | R1 = R2 = R3 = OH, R4 = O-rutinose | P |
[ |
66 | Genistein | D | R1 = R2 = H | S, J |
[ |
67 | Genistin | D | R1 = β-D-Glc, R2 = H | S, J |
[ |
68 | Biochanin A | D | R1 = H, R2 = CH3 | F |
[ |
69 | Naringenin chalcone | E | R1 = OH, R2 = H | S, J |
[ |
70 | Isoliquiritin | E | R1 = H, R2 = β-D-Glc | S, J |
[ |
71 | Phloretin | F | - | S, J |
[ |
72 | Catechin | G | R = H | S, J, P, F |
[ |
73 | Gallocatechin | G | R = OH | S, J, P |
[ |
74 | Epicatechin | H | R = H | S, J, P |
[ |
75 | Epigallocatechin | H | R = OH | S, J, P |
[ |

Figure 2 Nuclear structures of flavonoids in different parts of pomegranate
石榴种子、汁、花中已发现了10个萜类化合
No. | Compound | Part | Reference |
---|---|---|---|
76 | Oleuropein | S, J |
[ |
77 | Abscisic acid | S, J |
[ |
78 | Atractylenolide I | S, J |
[ |
79 | α-Cyperone | S, J |
[ |
80 | Corosolic acid | S, J |
[ |
81 | Ursolic acid | S, J, F |
[ |
82 | Betulonic acid | S, J |
[ |
83 | Maslinic acid | S, J |
[ |
84 | Oleanolic acid | S, J, F |
[ |
85 | Taraxerol | F |
[ |

Figure 3 Structures of terpenoids in different parts of pomegranate
石榴皮中已分离得到了7个生物碱类化合
No. | Compound | Part | Reference |
---|---|---|---|
86 | Trigonelline | S, J |
[ |
87 | Indigo | S, J |
[ |
88 | Indirubin | S, J |
[ |
89 | Palmatine | S, J |
[ |
90 | Berberine | S, J |
[ |
91 | Caffeine | P |
[ |
92 | Hygrine | P |
[ |
93 | Norhygrine | P |
[ |
94 | Pseudopelletierine | P |
[ |
95 | Norpseudopelletierine | P |
[ |
96 | Pelletierine | P |
[ |
97 | N-Methylpelletierine | P |
[ |

Figure 4 Structures of alkaloids in different parts of pomegranate
目前,从石榴皮、种子、汁、花中已发现23个酚酸类化合物(98 ~ 120
No. | Compound | Part | Reference |
---|---|---|---|
98 | 2S, 3S, 4S-Trihydroxypentanoic acid | F |
[ |
99 | Cinnamic acid | S, J, P |
[ |
100 | 4-Hydroxycinnamic acid | S, J, P |
[ |
101 | Ferulic acid | S, J, P |
[ |
102 | Methyl ferulate | S, J |
[ |
103 | Isoferulic acid | S, J, P |
[ |
104 | Sinapic acid | S, J |
[ |
105 | Caffeic acid | S, J, P |
[ |
106 | Caffeic acid phenethyl ester | S, J |
[ |
107 | Salicylic acid | S, J, P |
[ |
108 | 2, 5-Dihydroxybenzoic acid | S, J, P |
[ |
109 | 3, 4-Dihydroxybenzoic acid | S, J |
[ |
110 | Vanillic acid | P |
[ |
111 | Brevifolin | F |
[ |
112 | Brevifolincarboxylic acid | S, J, F |
[ |
113 | Methyl brevifolincarboxylate | F |
[ |
114 | Ethyl brevifolincarboxylate | F |
[ |
115 | Gallic acid | P, S, J, F |
[ |
116 | Methyl gallate | S, J, P |
[ |
117 | Ethyl gallate | F | 14] |
118 | Ellagic acid | S, J, P, F |
[ |
119 | Chlorogenic acid | P |
[ |
120 | Rosmarinic acid | P |
[ |
石榴汁、花和皮中富含花青素类成分。目前,已发现了16个花青素类化合
No. | Compound | Part | Reference |
---|---|---|---|
121 | Malvidin-3-O-glucoside | J |
[ |
122 | Malvidin-3-O-(6″-acetyl)-glucoside | P, J |
[ |
123 | Petunidin-3-O-glucoside | J |
[ |
124 | Peonidin-3-O-glucoside | P |
[ |
125 | Peonidin-3-O-(6″-malonyl)-glucoside | P |
[ |
126 | Peonidin-3-O-(6″-p-coumaroyl)-glucoside | J |
[ |
127 | Cyanidin-3-O-galactoside | J |
[ |
128 | Cyanidin-3-O-glucoside | J, F |
[ |
129 | Cyanidin-3-O-rutinoside | J |
[ |
130 | Cyanidin-3,5-O-diglucoside | J, F |
[ |
131 | Delphinidin-3-O-glucoside | J, F |
[ |
132 | Delphinidin-3-O-caffeoyl | J |
[ |
133 | Delphinidin-3,5-diglucoside | J |
[ |
134 | Delphinidin-3-O-caffeoyl-5-O-glucoside | J |
[ |
135 | Pelargonidin-3-glucoside | J, F |
[ |
136 | Pelargonidin-3-O-caffeoyl-5-O-glucoside | J |
[ |
137 | Pelargonidin-3, 5-diglucoside | J, F |
[ |
目前,从石榴种子、皮、花中已发现了16个脂肪酸类化合
现代药理学研究表明,石榴各药用部位具有抗氧化、降血糖、抗炎、抗动脉粥样硬化作用、抗肿瘤作用、抗菌作用等。
Chang
Liu
Wu
Benchagra
Benchagra
Song
石榴药材资源丰富、应用广泛,其果皮、种子、花、叶、根均可入药, 但中药和民族药对石榴的应用存在差异。首先,中药主要以石榴皮作为药用部
近年来国内外对石榴各药用部位的研究主要集中于石榴皮、籽、花,而对石榴叶和根的研究较少;另一方面,尽管石榴多样的药理活性已得到广泛验证,但大多研究应用混合提取物验证其治疗作用,对单体化合物的活性研究较少。此外,对石榴各药用部位的药理活性研究多为体外筛选,其药效物质与作用机制的关系有待更深层次的探索。本文对石榴各药用部位的民族药用法、化学成分及药理作用进行综述,以期为阐明其药效物质基础提供科学依据,为其进一步综合开发利用提供参考。
References
Editorial Board of the Flora of China. Flora of China (中国植物志) [S]. Beijing: Science Pres, 2004: 120-121. [百度学术]
Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia: part 1 (中华人民共和国药典: 一部)[S]. Beijing: China Medical Science Press, 2020: 97. [百度学术]
Tao HJ. Mingyi Bielu (Compiled Edition) (名医别录:辑校本)][M]. Shang ZJ, Compilation. Beijing: China Press of Traditional Chinese Medicine, 2013: 3. [百度学术]
Ma MF, Zhang DD, Zhang B. Research progress on chemical constituents and pharmacological effects of pomegranate seeds[J]. Food Drug (食品与药品), 2020, 22(5): 434-437. [百度学术]
Li SZ. Compendium of Materia Medica(本草纲目)[M]. Xie QT, Compilation. Beijing: China International Broadcasting Audio Visual Press, 2006: 172-173. [百度学术]
Luo SD. Newly revised Jingzhu Materia Medica (新修晶珠本草)[M].Sichuan: Sichuan Science and Technology Press, 2004: 465. [百度学术]
Editorial Board of Chinese Materia Medica of National Administration of Traditional Chinese Medicine. Chinese Materia Medica: Uyghur medicinal roll (中华本草:维吾尔药卷)[M]. Shanghai: Shanghai Scientific & Technical Publishers. 2005: 118-119. [百度学术]
Editorial Board of Chinese Materia Medica of National Administration of Traditional Chinese Medicine. Chinese Materia Medica: Miao medicine roll (中华本草:苗药卷)[M]. Guiyang: Guizhou Science and Technology Press, 2005: 154-156. [百度学术]
Editorial Board of Chinese Materia Medica of National Administration of Traditional Chinese Medicine. Chinese Materia Medica: Mongolian Medicine Roll (中华本草:蒙药卷)[M]. Shanghai: Shanghai Scientific & Technical Publisher, 2004: 154-156. [百度学术]
Nanjing University of Traditional Chinese Medicine. Dictionary of Traditional Chinese Medicine (中药大辞典) [M]. 2nd ed. Shanghai: Shanghai Scientific & Technical Publisher, 2006: 858. [百度学术]
Li QL, Zhou J, Wu Y, et al. Effect of tannins from Punica granatum L. on the expression of nephrin and podocin in the podocytes of rats with passive heymann nephritis[J]. Chin Pharm J (中国药学杂志), 2021, 56(5): 351-358. [百度学术]
Abdulla R, Mansur S, Lai HZ, et al. Qualitative analysis of polyphenols in macroporous resin pretreated pomegranate husk extract by HPLC-QTOF-MS[J]. Phytochem Anal, 2017, 28(5): 465-473. [百度学术]
Li GP, Chen M, Chen J, et al. Chemical composition analysis of pomegranate seeds based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry[J]. J Pharm Biomed Anal, 2020, 187(1): 9. [百度学术]
Liu YQ and Seeram NP. Liquid chromatography coupled with time-of-flight tandem mass spectrometry for comprehensive phenolic characterization of pomegranate fruit and flower extracts used as ingredients in botanical dietary supplements[J]. J Sep Sci, 2018, 41(15): 3022-3033. [百度学术]
Liu YC, Dai YP, Wang BL, et al. Rapid analysis of tannins from pomegranate peel based on UPLC-Quadrupole/Exactive Orbitrap mass combined with diagnostic ions filter [J]. Chin Arch Tradit Chin Med (中华中医药学刊), 2023, 41(5): 71-79. [百度学术]
Gómez-Caravaca AM, Verardo V, Toselli M, et al. Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS[J]. J Agric Food Chem, 2013, 61(22): 5328-5337. [百度学术]
El-Hadary AE, Ramadan MF. Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract[J]. J Food Biochem, 2019, 43(4): e12803. [百度学术]
Ito H, Li P, Koreishi M, et al. Ellagitannin oligomers and a neolignan from pomegranate arils and their inhibitory effects on the formation of advanced glycation end products[J]. Food Chem, 2014, 152: 323-330. [百度学术]
Derakhshan Z, Ferrante M, Tadi M, et al. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds[J]. Food Chem Toxicol, 2018, 114: 108-111. [百度学术]
Yang YX, Yan FL, Wang X. Chemical constituents from Punica granatum flowers[J]. J China Med Mater (中药材), 2014, 37(5): 804-807. [百度学术]
Zhou CH, Jin C, Zhao YH, et al. Chemical constituents from the flowers of Punica granatum[J]. Chin Tradit Pat Med (中成药), 2020, 42(1): 102-106. [百度学术]
Cruz-Valenzuela MR, Ayala-Soto RE, Ayala-Zavala JF, et al. Pomegranate (Punica granatum L. ) peel extracts as antimicrobial and antioxidant additives used in alfalfa sprouts[J]. Foods, 2022, 11(17): 2588. [百度学术]
Ge SS, Duo L, Wang JQ, et al. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status[J]. J Ethnopharmacol, 2021, 271: 113877. [百度学术]
Neuhöfer H, Witte L, Gorunović M, et al. Alkaloids in the bark of Punica granatum L. (pomegranate) from Yugoslavia[J]. Pharmazie, 1993, 48: 389-391. [百度学术]
Yisimayili Z, Chao Z. A review on phytochemicals, metabolic profiles and pharmacokinetics studies of the different parts (juice, seeds, peel, flowers, leaves and bark) of pomegranate (Punica granatum L. ) [J]. Food Chem, 2022, 395: 133600. [百度学术]
Topalović A, Knežević M, Gačnik S, et al. Detailed chemical composition of juice from autochthonous pomegranate genotypes (Punica granatum L.) grown in different locations in Montenegro[J]. Food Chem, 2020, 330: 127261. [百度学术]
Labbé M, Ulloa PA, López F, et al. Characterization of chemical compositions and bioactive compounds in juices from pomegranates (‘Wonderful’, ‘Chaca’ and ‘Codpa’) at different maturity stages[J]. Chilean J Agric Res, 2016, 76(4): 479-486. [百度学术]
Ün İ, Ün ŞŞ, Tanrıkulu N, et al. Assessing the concentration of conjugated fatty acids within pomegranate seed oil using quantitative nuclear magnetic resonance (qNMR)[J]. Phytochem Anal, 2022, 33(3): 452-459. [百度学术]
Cao F, Li HT, Zhang BY. Analysis of fatty acid in peel of Punica granatum by HPLC with pre-column derivatization[J]. West China J Pharm Sci (华西药学杂志), 2018, 33(4): 406-409. [百度学术]
Al Juhaimi F, Özcan MM, Ghafoor K. Characterization of pomegranate (Punica granatum L. ) seed and oils[J]. Eur J Lipid Sci Technol, 2017, 119(10): 1700074. [百度学术]
Verardo V, Garcia-Salas P, Baldi E, et al. Pomegranate seeds as a source of nutraceutical oil naturally rich in bioactive lipids[J]. Food Res Int, 2014, 65: 445-452. [百度学术]
Chang ZY, Liu GH, Gulibahar K, et al. Optimization of extraction for punicalagin from pomegranate peel by response surface methodology and its antioxidant activity[J]. Food Res Dev (食品研究与开发), 2020, 41(22): 100-107. [百度学术]
Zu YG, Zhong C, Zhao XH, et al. Optimization of processing technology and study on antioxidant activity in vivo of superfine powder of Granati Pericarpium[J]. Chin Tradit Herb Drugs (中草药), 2015, 46(10): 1454-1459. [百度学术]
Derakhshan Z, Ferrante M, Tadi M, et al. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds[J]. Food Chem Toxicol, 2018, 114: 108-111. [百度学术]
Yoshime LT, de Melo ILP, Sattler JAG, et al. Bioactive compounds and the antioxidant capacities of seed oils from pomegranate (Punica granatum L.) and bitter gourd (Momordica charantia L.) [J]. Food Sci Technol, 2019, 39(suppl 2): 571-580. [百度学术]
Xing J, Lu WJ, Zhao YX, et al. Purification and antioxidant activity of polyphenols from Punica granatum L.[J]. J Nanjing Norm Univ (Nat Sci Ed) (南京师大学报 自然科学版), 2015, 38(3): 84-90. [百度学术]
Liu Y, Kong KW, Wu DT, et al. Pomegranate peel-derived punicalagin: Ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism[J]. Food Chem, 2022, 374: 131635. [百度学术]
Kam A, Li KM, Razmovski-Naumovski V, et al. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α-amylase and α-glucosidase[J]. Phytother Res, 2013, 27(11): 1614-1620. [百度学术]
Zhang WM, Hou C, Du L, et al. Protective action of pomegranate peel polyphenols in type 2 diabetic rats via the translocation of Nrf2 and FoxO1 regulated by the PI3K/Akt pathway[J]. Food Funct, 2021, 12(22): 11408-11419. [百度学术]
Liu WX, Ma H, Frost L, et al. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species[J]. Food Funct, 2014, 5(11): 2996-3004. [百度学术]
Gościniak A, Bazan-Woźniak A, Pietrzak R, et al. Pomegranate flower extract-the health-promoting properties optimized by application of the box-behnken design[J]. Molecules, 2022, 27(19): 6616. [百度学术]
Wu SJ, Wang XJ, Zhang WS, et al. Effects of pomegranate juice on DSS-induced ulcerative colitis in mice[J]. Food Sci (食品科学), 2023, 44(13): 88-96. [百度学术]
Lee CJ, Chen LG, Liang WL, et al. Anti-inflammatory effects of Punica granatum Linn. in vitro and in vivo[J]. Food Chem, 2010, 118(2): 315-322. [百度学术]
Marques LC, Pinheiro AJ, Araújo JG, et al. Anti-inflammatory effects of a pomegranate leaf extract in LPS-induced peritonitis[J]. Planta Med, 2016, 82(17): 1463-1467. [百度学术]
Benchagra L, Berrougui H, Islam MO, et al. Antioxidant effect of Moroccan pomegranate (Punica granatum L.sefri variety) extracts rich in punicalagin against the oxidative stress process[J]. Foods, 2021, 10(9): 2219. [百度学术]
Anwaier G, Lian G, Ma GZ, et al. Punicalagin attenuates disturbed flow-induced vascular dysfunction by inhibiting force-specific activation of Smad1/5[J]. Front Cell Dev Biol, 2021, 9: 697539. [百度学术]
Aharoni S, Lati Y, Aviram M, et al. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state[J]. Biofactors, 2015, 41(1): 44-51. [百度学术]
Eskandari E, Heidarian E, Amini SA, et al. Evaluating the effects of ellagic acid on pSTAT3, pAKT, and pERK1/2 signaling pathways in prostate cancer PC3 cells[J]. J Cancer Res Ther, 2016, 12(4): 1266-1271. [百度学术]
Mandal A, Bishayee A. Mechanism of breast cancer preventive action of pomegranate: disruption of estrogen receptor and Wnt/β-catenin signaling pathways[J]. Molecules, 2015, 20(12): 22315-22328. [百度学术]
Song CQ, Zhou BH, Yi HL, et al. Antibacterial activity of tannins from Pericarpium Granati(TPG) and its antibacterial mechanism against Staphylococcus aureus[J]. Chin J Hosp Pharm (中国医院药学杂志), 2016, 36(4): 259-265. [百度学术]
Rosas-Burgos EC, Burgos-Hernández A, Noguera-Artiaga L, et al. Antimicrobial activity of pomegranate peel extracts as affected by cultivar[J]. J Sci Food Agric, 2017, 97(3): 802-810. [百度学术]
Gullon B, Pintado ME, Pérez-Álvarez JA, et al. Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (Punica granatum) flour obtained from co-product of juice extraction[J]. Food Control, 2016, 59: 94-98. [百度学术]
Wu WX, Jiang S, Liu MM, et al. Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L. ) flowers and its biological activities[J]. Ultrason Sonochem, 2021, 80: 105833. [百度学术]
Meng LQ. A traditional Chinese medicine combination for treating cholecystitis: 105106516A[P]. 2015-12-02 [2023-03-23]. [百度学术]
Kearns R, Chang ZY, Niu RH, et al. Punicalagin inhibits hepatic lipid deposition in obese mice via the AMPK/ACC pathway[J]. China J Chin Mater Med (中国中药杂志), 2023, 48(7):1751-1759. [百度学术]
Salles TS, Meneses MDF, Caldas LA, et al. Virucidal and antiviral activities of pomegranate (Punica granatum) extract against the mosquito-borne Mayaro virus[J]. Parasit Vectors, 2021, 14(1): 443. [百度学术]
Zhang LJ, Jiang Y, Liu BH, et al. Advances in the etiology of chronic diarrhea in adults[J]. Chin Gen Pract (中国全科医学), 2019(22): 2760-2765. [百度学术]
Ren JG, Wang DZ, Lei L, et al. Preliminary analysis on relationship between traditional efficacy of Chinese medicine and modern pharmacological action[J]. China J Chin Mater Med (中国中药杂志), 2017, 42(10): 1979-1983. [百度学术]
Lü) GY, Yan MQ, Chen SH. Review of pharmacological activities of Dendrobium officinale based on traditional functions[J]. China J Chin Mater Med (中国中药杂志), 2013, 38(4): 489-493. [百度学术]