摘要
细菌耐药性严重影响全球公共卫生安全。抗生素错用和滥用不仅没有达到治疗细菌感染性疾病的效果,反而会刺激细菌发生DNA损伤修复反应(SOS反应),加剧细菌耐药性的进化和耐药菌的传播。本文聚焦于耐药菌,简明介绍细菌耐药性与SOS反应,系统概述了质谱技术、微流控技术及其联用技术在细菌检测及细菌耐药机制研究中的应用。本文为细菌耐药性相关的药物靶点挖掘及新药开发提供理论参考,以期发展细菌耐药性快速检测新方法和抑菌新方法,推动临床细菌感染性疾病的诊断与治疗。
细菌是最常见的病原微生物之一,是引起大部分感染性疾病的重要原因。1928年,Alexander Fleming发现了第1种抗生素——青霉素,使得医生们拥有了完全治愈感染性疾病的方法。抗生素的出现,无疑是人类历史上一个重要的转折点,开启了人类历史的新纪元。然而,细菌却对抗生素产生了耐药性,导致抗生素杀菌效率降低,致使细菌感染性疾病的治疗又出现了困难。20世纪30年代末至40年代,首次出现了抗生素耐药的问题。就在当时第一批抗菌药物磺胺类药物和青霉素刚刚问世不久,普通细菌如金黄色葡萄球菌(Staphylococcus aureus, S.aureus)对这类抗生素产生耐药性的速度达到了创纪录的水
细菌耐药性对人类和动物健康、粮食安全和经济发展构成重大威
致病菌通过两种不同的遗传机制获得耐药
当处于抗生素造成的压力环境中时,细菌会发生DNA损伤修复反应(SOS反应),抵抗压力以进行自救。这种反应机制潜在地加速了细菌进化和耐药性的产生。LexA(阻遏因子)和RecA(诱导因子)在调节SOS反应中起关键作用,控制SOS基因的表
细菌形态成丝状是SOS反应在表型上的一种体现。SOS反应通过在DNA损伤修复过程中抑制细胞分裂,当细菌细胞分裂受到抑制但还在继续生长的时候,丝状就会产生。例如,使用β-内酰胺类抗生素去刺激细菌、干扰细菌细胞分裂时,细胞会呈现丝状;当抗生素浓度稀释或抗生素失活时,细菌又会存活下
质谱是一种分析技术,根据化学物质的质荷比将离子进行区分。质谱有灵敏度高、检测限低、检测速度快等优点,在生物化学领域被广泛应用在蛋白质组学、代谢组学、高通量药物筛选等方面,是环境监测、食品质控、临床诊断等领域的重要手段工具。常用于细菌分析研究的质谱包括基质辅助激光解吸离子化飞行时间(matrix assisted laser desorption/ionization time-of-flight,MALDI-TOF)质谱、电喷雾离子化(electrospray spray ionization,ESI)质谱、敞开式质谱(ambient mass spectrometry)等。利用质谱技术分析细菌可以实现细菌鉴定、耐药菌株与敏感菌株区分、细菌耐药性检测等(

图1 基于质谱的细菌检测及耐药机制研究MALDI-TOF:基质辅助激光解吸离子化飞行时间;AMR:抗生素耐药性
MALDI作为一种基于细菌蛋白质量分布鉴定细菌的方法,具有检测快速、方便、准确等优点,已经应用于临床微生物鉴定、核酸检测等方面,同时可应用于细菌药物敏感性分析。
在微生物鉴定方面,Bruker推出了Biotyper CA system商品化仪器,包含MALDI-TOF质谱仪、软件、数据
使用ESI质谱可以直接对细菌细胞进行检测分析。直接检测细菌细胞时,质谱的主要信号来源于小分子代谢物和一些脂质分
对细菌样品进行预处理不仅可以获得纯化的生物分子样品,而且可以避免因直接引入细菌导致电喷雾喷针堵塞的问题。可使用超声波和裂解液裂解细菌细胞,离心分离提取出细菌的蛋
敞开式离子化质谱(ambient ionization mass spectrometry,AMS)通过检测细菌样品挥发出的气态代谢物、或者固态样品本身,实现对细菌样品的检测,可应用于病原菌的早期检测和快速分类。利用AMS,样品可不经预处理直接从其原生环境中进行分
基于质谱的蛋白质组学和代谢组学分析技术可以提供丰富的蛋白和代谢分子信息,是阐述生物体代谢途径的重要技术。组学技术是指导耐药性分析的重要手段,对细菌耐药性发生机制的研究、药物靶点的筛选以及新药开发具有积极意义(
检测耐药相关蛋白及其丰度的变化可以实现对细菌耐药性的解析。对耐药相关蛋白的研究往往是通过比较敏感菌株和耐药菌株的蛋白种类和丰度的差异;或利用抗生素刺激细菌,并与未受抗生素刺激的细菌进行蛋白质种类和丰度比较,分析差异蛋白的功能归属,从而实现相关机制的研究。早期的蛋白质组学是利用基于固定pH梯度的二维凝胶电泳技术的方法来检测不同样品蛋白丰度的差异。现在广泛应用的是基于液相色谱串联质谱(liquid chromatography-tandem mass spectrometry,LC‐MS/MS)的蛋白质组学来鉴定、定量蛋
Chua
另一种为非标记定量,不需要稳定的同位素标签作内部标准。Sharma
蛋白驱动着代谢过程,而代谢反映了蛋白调节的全局情况。因此,相对于蛋白质组学,代谢组学更能反映微生物细胞动态的、实时的状态。了解细菌应对抗生素药物的动态变化可以解释耐药发生机制。Zampieri
使用二氧化钛辅助激光解吸离子化(TiO2 assisted desorption/ionization)质谱检测细菌胞内代谢物也可以区分不同细菌菌株,检测细菌耐药
很多时候可以将多种组学分析方法相结合来综合研究细菌耐药问题。多种组学可以互相验证,更全面准确地分析细菌耐药性机制。Wright
如今,病原菌检测方法以高灵敏、准确、快速地鉴定多种微生物为发展目标。然而,从高度复杂背景的样品中提取病原微生物的过程至关重要,而这一步骤往往耗费很长时间。发展能极大地缩短并简化样品预处理过程的新方法,是众望所归。微流控技术是从20世纪80年代至90年代初快速发展的多学科技
微生物的纯化和富集是实现准确鉴定的关键。传统的细菌纯化方法依赖于细菌培养,耗时长且只能应用于可培养的物种。而且,从单菌落中纯化的细菌不能完全代表原始的样品成分,尤其是当原始的样品中有很多种微生物。为克服培养中的偏差问题,实现快速原位鉴定,不同的微流控芯片被设计出来,从空气、水、食品、临床等样品中,通过物理、化学或生物化学等方法富集和纯化细菌。微生物提取的物理方法主要依赖于惯性差异、大小差异、过滤、声波分离和特殊的微通道结构设
Homann
微流控芯片也可以用于实现细菌药物敏感性的分析检测。Xu
除了根据上述显色反应实现耐药性检测,还可以通过观察微流控芯片内细菌的生长状况完成细菌药物敏感性分析。Choi
微流控芯片技术还能在单细菌水平上实现耐药性的分析检测。Kandavalli
微流控芯片与质谱联用可以极大地提高质谱方法的整体分析性能,并拓展其潜在的应用前
细菌耐药性是在全球范围内危害人类生命健康的重大公共安全问题。一些“超级细菌”,如碳青霉烯耐药肠杆菌、碳青霉烯耐药不动杆菌等对大多数的抗生素都具有耐药性,极大地增加了临床治疗的难度。抗生素的过量使用和滥用不仅加速了细菌耐药性的产生和进化,同时也促进了耐药菌的传播。因此,发展快速、准确检测耐药菌的方法和开展耐药机制的研究尤为重要。一方面,快速的检测方法可以为后续治疗节省大量的时间;另一方面,准确的检测结果可以为后续治疗选择最合适的药物提供理论基础。抗生素新药研发的速度已经追赶不上细菌耐药性的进化速度,单纯依靠现有的抗生素很难满足细菌感染性疾病的治疗,因此需要发展新的抑菌杀菌方法来弥补这方面的不足。在分子水平上对细菌耐药性的机制进行研究,可以为新药的开发奠定基础。
各种各样的微流控芯片被设计用以从复杂样本中提取细菌,并与多种分析方法联用检测环境、食品和人体液中的病原微生物。用于临床检测病原菌的微流控芯片朝着及时、快速分析、自动化、高通量、高特异性、高准确度、无损害、便捷、低成本和方便的方向发展。微流控芯片用于临床的关键性要求是稳定、重现性好和能大量生产,这就要求发展新的微流控芯片制造技术和新型材料。微流控技术可以实现各类功能的整合,避免了很多繁琐的操作。质谱作为一种分析检测技术手段,广泛应用于细菌鉴定和耐药性机制的研究。MALDI-TOF质谱已经进入到各大医院,广泛应用于微生物鉴定、核酸检测等方面,而且在细菌药敏试验方面也极具潜力。LC-MS/MS是研究代谢组学和蛋白质组学的重要工具。完整全面的组学鉴定信息和定量信息无疑为机制的研究带来了源源不断的动力,而新型质谱仪器的开发则为这些研究提供了坚实的基础。
微流控质谱联用技术具有快速、简便获得微生物丰富的蛋白、代谢物信息的能力。一方面,该技术既保证了对微生物细胞的精准控制,使目标微生物能在芯片中富集、纯化,又可获得大量的生物分子信息。因此,该技术可以更加快速和高效地获取细菌菌种信息及药物敏感性信息。另外,微流控芯片为细菌提供了反应平台,如药物刺激、与宿主细胞相互作用、微生物间相互作用等,可用于模拟各种生理、病理微环境,研究细菌感染性疾病机制、宿主免疫、靶点挖掘、药物筛选等。而与质谱的在线联用确保了质谱技术能够实时检测到各种反应状态下的微生物代谢状态,获得更准确的微生物细胞生理状态信息,避免了繁琐预处理步骤中代谢状态变化的问题。然而,微流控芯片的微腔室体积较小,可容纳的微生物的含量可能不足以完成高度覆盖的代谢组学和蛋白质组学分析。这就需要高灵敏的质谱检测技术,以及在芯片上或者芯片后方增加样品分离步骤,提高覆盖度。微流控芯片与质谱的接口也需要进行设计优化,确保不同制作批次的相同芯片中的样品的离子化效率一致,以提高检测重现性和不同组别之间的可比较性。此外,盐类化合物进入质谱会极大降低分析灵敏度,这就需要在微流控芯片内或后端增加除盐的步骤。未来,微流控质谱技术可朝着原位化、集成化、自动化发展,在食品安全、临床、环境监测等各个领域的细菌分析中将会有巨大的潜力和广阔的前景。
References
Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era?[J]. Arch Med Res, 2005, 36(6): 697-705. [百度学术]
Deresinski S. Methicillin-resistant Staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey[J]. Clin Infect Dis, 2005, 40(4): 562-573. [百度学术]
UNEP. Bracing for Superbugs: Strengthening environmental action in the ‘One Health’ response to antimicrobial resistance [R], 2023. [百度学术]
Ayobami O, Brinkwirth S, Eckmanns T, et al. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis[J]. Emerg Microbes Infect, 2022, 11(1): 443-451. [百度学术]
Knobler S, Lemon S, Najafi M, et al. WHO global strategy for containment of antimicrobial resistance: executive summary, 2003. [百度学术]
O'Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations, the review on antimicrobial resistance [R], 2014. [百度学术]
Antibiotic resisance threats in the United States [R]: CDC Centers for Disease Control and Prevention, Department of Health and Human Services, 2019. [百度学术]
MacLean RC, San Millan A. The evolution of antibiotic resistance[J]. Science, 2019, 365(6458): 1082-1083. [百度学术]
Manage PM, Liyanage GY. Antibiotics induced antibacterial resistance[M]//Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Amsterdam: Elsevier, 2019: 429-448. [百度学术]
Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. The SOS system: a complex and tightly regulated response to DNA damage[J]. Environ Mol Mutagen, 2019, 60(4): 368-384. [百度学术]
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response[J]. Int J Biol Macromol, 2022, 217: 931-943. [百度学术]
Alam MK, Alhhazmi A, DeCoteau JF, et al. RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance[J]. Cell Chem Biol, 2016, 23(3): 381-391. [百度学术]
Crane JK, Alvarado CL, Sutton MD. Role of the SOS response in the generation of antibiotic resistance in vivo[J]. Antimicrob Agents Chemother, 2021, 65(7): e0001321. [百度学术]
Mohanraj RS, Mandal J. Azithromycin can induce SOS response and horizontal gene transfer of SXT element in Vibrio cholerae[J]. Mol Biol Rep, 2022, 49(6): 4737-4748. [百度学术]
Miller C, Thomsen LE, Gaggero C, et al. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality[J]. Science, 2004, 305(5690): 1629-1631. [百度学术]
Justice SS, Hunstad DA, Cegelski L, et al. Morphological plasticity as a bacterial survival strategy[J]. Nat Rev Microbiol, 2008, 6(2): 162-168. [百度学术]
Braga PC, Piatti G. Kinetics of filamentation of Escherichia coli induced by different sub-MICs of ceftibuten at different times[J]. Chemotherapy, 1993, 39(4): 272-277. [百度学术]
Yao ZZ, Kahne D, Kishony R. Distinct single-cell morphological dynamics under beta-lactam antibiotics[J]. Mol Cell, 2012, 48(5): 705-712. [百度学术]
Bos J, Zhang QC, Vyawahare S, et al. Emergence of antibiotic resistance from multinucleated bacterial filaments[J]. Proc Natl Acad Sci U S A, 2015, 112(1): 178-183. [百度学术]
Banerjee S, Lo K, Ojkic N, et al. Mechanical feedback promotes bacterial adaptation to antibiotics[J]. Nat Phys, 2021, 17(3): 403-409. [百度学术]
Patel R. MALDI-TOF MS for the diagnosis of infectious diseases[J]. Clin Chem, 2015, 61(1): 100-111. [百度学术]
Saffert RT, Cunningham SA, Ihde SM, et al. Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli[J]. J Clin Microbiol, 2011, 49(3): 887-892. [百度学术]
Zhu YD, Qiao L, Prudent M, et al. Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis[J]. Chem Sci, 2016, 7(5): 2987-2995. [百度学术]
Zhu YD, Gasilova N, Jović M, et al. Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry[J]. Chem Sci, 2018, 9(8): 2212-2221. [百度学术]
Zhang Y, Tang Y, Tan CR, et al. Toward nanopore electrospray mass spectrometry: nanopore effects in the analysis of bacteria[J]. ACS Cent Sci, 2020, 6(6): 1001-1008. [百度学术]
Goodacre R, Heald JK, Kell DB. Characterisation of intact microorganisms using electrospray ionisation mass spectrometry[J]. FEMS Microbiol Lett, 1999, 176(1): 17-24. [百度学术]
Vaidyanathan S, Rowland JJ, Kell DB, et al. Discrimination of aerobic endospore-forming bacteria via electrospray-lonization mass spectrometry of whole cell suspensions[J]. Anal Chem, 2001, 73(17): 4134-4144. [百度学术]
Dworzanski JP, Snyder AP, Chen R, et al. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring[J]. Anal Chem, 2004, 76(8): 2355-2366. [百度学术]
Kinter M, Sherman NE. Protein Sequencing and Identification Using Tandem Mass Spectrometry: Kinter/Tandem Mass Spectrometry[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000. [百度学术]
Chen CY, Clark CG, Langner S, et al. Detection of antimicrobial resistance using proteomics and the comprehensive antibiotic resistance database: a case study[J]. Proteomics Clin Appl, 2020, 14(4): e1800182. [百度学术]
Blumenscheit C, Pfeifer Y, Werner G, et al. Unbiased antimicrobial resistance detection from clinical bacterial isolates using proteomics[J]. Anal Chem, 2021, 93(44): 14599-14608. [百度学术]
Bertini I, Hu XY, Luchinat C. Global metabolomics characterization of bacteria: pre-analytical treatments and profiling[J]. Metabolomics, 2014, 10(2): 241-249. [百度学术]
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification[J]. Can J Biochem Physiol, 1959, 37(8): 911-917. [百度学术]
Eugster MR, Loessner MJ. Rapid analysis of Listeria monocytogenes cell wall teichoic acid carbohydrates by ESI-MS/MS[J]. PLoS One, 2011, 6(6): e21500. [百度学术]
Chingin K, Liang JC, Chen HW. Direct analysis of in vitro grown microorganisms and mammalian cells by ambient mass spectrometry[J]. RSC Adv, 2014, 4(11): 5768-5781. [百度学术]
Zhu JJ, Hill JE. Detection of Escherichia coli via VOC profiling using secondary electrospray ionization-mass spectrometry (SESI-MS)[J]. Food Microbiol, 2013, 34(2): 412-417. [百度学术]
Meetani MA, Shin YS, Zhang SF, et al. Desorption electrospray ionization mass spectrometry of intact bacteria[J]. J Mass Spectrom, 2007, 42(9): 1186-1193. [百度学术]
Zhang JI, Talaty N, Costa AB, et al. Rapid direct lipid profiling of bacteria using desorption electrospray ionization mass spectrometry[J]. Int J Mass Spectrom, 2011, 301(1/2/3): 37-44. [百度学术]
Li H, Balan P, Vertes A. Molecular imaging of growth, metabolism, and antibiotic inhibition in bacterial colonies by laser ablation electrospray ionization mass spectrometry[J]. Angew Chem Int Ed Engl, 2016, 55(48): 15035-15039. [百度学术]
Pierce CY, Barr JR, Cody RB, et al. Ambient generation of fatty acid methyl ester ions from bacterial whole cells by direct analysis in real time (DART) mass spectrometry[J]. Chem Commun, 2007(8): 807-809. [百度学术]
So PK, Yang BC, Li W, et al. Development of tip-desorption electrospray ionization coupled with ion mobility-mass spectrometry for fast screening of carbapenemase-producing bacteria[J]. Talanta, 2019, 201: 237-244. [百度学术]
Dean SN, Walsh C, Goodman H, et al. Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry[J]. Biofouling, 2015, 31(2): 151-161. [百度学术]
Peng B, Li H, Peng XX. Proteomics approach to understand bacterial antibiotic resistance strategies[J]. Expert Rev Proteomics, 2019, 16(10): 829-839. [百度学术]
Chua SL, Yam JKH, Hao PL, et al. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms[J]. Nat Commun, 2016, 7: 10750. [百度学术]
Hao L, Yang X, Chen HL, et al. Molecular characteristics and quantitative proteomic analysis of Klebsiella pneumoniae strains with carbapenem and colistin resistance[J]. Antibiotics, 2022, 11(10): 1341. [百度学术]
Sharma D, Garg A, Kumar M, et al. Proteome profiling of carbapenem-resistant K. pneumoniae clinical isolate (NDM-4): exploring the mechanism of resistance and potential drug targets[J]. J Proteomics, 2019, 200: 102-110. [百度学术]
Monteiro R, Hébraud M, Chafsey I, et al. How different is the proteome of the extended spectrum β-lactamase producing Escherichia coli strains from seagulls of the Berlengas natural reserve of Portugal?[J]. J Proteomics, 2016, 145: 167-176. [百度学术]
Balboa SJ, Hicks LM. Revealing AMP mechanisms of action through resistance evolution and quantitative proteomics[J]. Methods Enzymol, 2022, 663: 259-271. [百度学术]
Peng JH, Cao J, Ng FM, et al. Pseudomonas aeruginosa develops Ciprofloxacin resistance from low to high level with distinctive proteome changes[J]. J Proteomics, 2017, 152: 75-87. [百度学术]
Zampieri M, Zimmermann M, Claassen M, et al. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations[J]. Cell Rep, 2017, 19(6): 1214-1228. [百度学术]
Liu JJ, Qi MY, Yuan ZC, et al. Nontargeted metabolomics reveals differences in the metabolite profiling among methicillin-resistant and methicillin-susceptible Staphylococcus aureus in response to antibiotics[J]. Mol Omics, 2022, 18(10): 948-956. [百度学术]
Aros-Calt S, Muller BH, Boudah S, et al. Annotation of the Staphylococcus aureus metabolome using liquid chromatography coupled to high-resolution mass spectrometry and application to the study of methicillin resistance[J]. J Proteome Res, 2015, 14(11): 4863-4875. [百度学术]
Li H, Xia X, Li XW, et al. Untargeted metabolomic profiling of amphenicol-resistant Campylobacter jejuni by ultra-high-performance liquid chromatography-mass spectrometry[J]. J Proteome Res, 2015, 14(2): 1060-1068. [百度学术]
Zhang RT, Qin Q, Liu BH, et al. TiO2-assisted laser desorption/ionization mass spectrometry for rapid profiling of candidate metabolite biomarkers from antimicrobial-resistant bacteria[J]. Anal Chem, 2018, 90(6): 3863-3870. [百度学术]
Liu SR, Peng XX, Li H. Metabolic mechanism of ceftazidime resistance in Vibrio alginolyticus[J]. Infect Drug Resist, 2019, 12: 417-429. [百度学术]
Wright MS, Suzuki Y, Jones MB, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance[J]. Antimicrob Agents Chemother, 2015, 59(1): 536-543. [百度学术]
Cai SQ, Zhang KX, Wei F, et al. Differential proteomic and genomic comparison of resistance mechanism of Pseudomonas aeruginosa to cefoperazone sodium/sulbactam sodium[J]. An Acad Bras Cienc, 2022, 94(3): e20211160. [百度学术]
Foudraine DE, Strepis N, Stingl C, et al. Exploring antimicrobial resistance to beta-lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics[J]. Sci Rep, 2021, 11(1): 12472. [百度学术]
Cheng ZX, Yang MJ, Peng B, et al. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus[J]. J Proteomics, 2018, 181: 83-91. [百度学术]
Yang Y, Lin Y, Qiao L. Direct MALDI-TOF MS identification of bacterial mixtures[J]. Anal Chem, 2018, 90(17): 10400-10408. [百度学术]
Ducrée J. Special issue: microfluidic lab-on-a-chip platforms for high-performance diagnostics[J]. Diagnostics, 2012, 2(1): 1. [百度学术]
Liu JF, Yadavali S, Tsourkas A, et al. Microfluidic diafiltration-on-chip using an integrated magnetic peristaltic micropump[J]. Lab Chip, 2017, 17(22): 3796-3803. [百度学术]
Ohlsson P, Evander M, Petersson K, et al. Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics[J]. Anal Chem, 2016, 88(19): 9403-9411. [百度学术]
Hong SC, Kang JS, Lee JE, et al. Continuous aerosol size separator using inertial microfluidics and its application to airborne bacteria and viruses[J]. Lab Chip, 2015, 15(8): 1889-1897. [百度学术]
Jing WW, Zhao W, Liu SX, et al. Microfluidic device for efficient airborne bacteria capture and enrichment[J]. Anal Chem, 2013, 85(10): 5255-5262. [百度学术]
Pereiro I, Bendali A, Tabnaoui S, et al. A new microfluidic approach for the one-step capture, amplification and label-free quantification of bacteria from raw samples[J]. Chem Sci, 2017, 8(2): 1329-1336. [百度学术]
Kang JH, Super M, Yung CW, et al. An extracorporeal blood-cleansing device for sepsis therapy[J]. Nat Med, 2014, 20(10): 1211-1216. [百度学术]
Homann AR, Niebling L, Zehnle S, et al. A microfluidic cartridge for fast and accurate diagnosis of Mycobacterium tuberculosis infections on standard laboratory equipment[J]. Lab Chip, 2021, 21(8): 1540-1548. [百度学术]
Jin JL, Duan LJ, Fu JL, et al. A real-time LAMP-based dual-sample microfluidic chip for rapid and simultaneous detection of multiple waterborne pathogenic bacteria from coastal waters[J]. Anal Methods, 2021, 13(24): 2710-2721. [百度学术]
Krafft B, Tycova A, Urban RD, et al. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water[J]. Electrophoresis, 2021, 42(1/2): 86-94. [百度学术]
Li YX, Wang T, Wu JM. Capture and detection of urine bacteria using a microchannel silicon nanowire microfluidic chip coupled with MALDI-TOF MS[J]. Analyst, 2021, 146(4): 1151-1156. [百度学术]
Bian XJ, Lan Y, Wang B, et al. Microfluidic air sampler for highly efficient bacterial aerosol collection and identification[J]. Anal Chem, 2016, 88(23): 11504-11512. [百度学术]
Srikanth S, Jayapiriya US, Dubey SK, et al. A lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria[J]. iScience, 2022, 25(11): 105388. [百度学术]
Xu BL, Du Y, Lin JQ, et al. Simultaneous identification and antimicrobial susceptibility testing of multiple uropathogens on a microfluidic chip with paper-supported cell culture arrays[J]. Anal Chem, 2016, 88(23): 11593-11600. [百度学术]
Lee WB, Fu CY, Chang WH, et al. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method[J]. Biosens Bioelectron, 2017, 87: 669-678. [百度学术]
Ma LY, Petersen M, Lu XN. Identification and antimicrobial susceptibility testing of Campylobacter using a microfluidic lab-on-a-chip device[J]. Appl Environ Microbiol, 2020, 86(9): e00096-e00020. [百度学术]
Ma LY, He WD, Petersen M, et al. Next-generation antimicrobial resistance surveillance system based on the internet-of-things and microfluidic technique[J]. ACS Sens, 2021, 6(9): 3477-3484. [百度学术]
Choi J, Yoo J, Lee M, et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis[J]. Sci Transl Med, 2014, 6(267): 267ra174. [百度学术]
Song KN, Yu ZQ, Zu XY, et al. Microfluidic chip for detection of drug resistance at the single-cell level[J]. Micromachines, 2022, 14(1): 46. [百度学术]
Kandavalli V, Karempudi P, Larsson J, et al. Rapid antibiotic susceptibility testing and species identification for mixed samples[J]. Nat Commun, 2022, 13(1): 6215. [百度学术]
Feng XJ, Liu BF, Li JJ, et al. Advances in coupling microfluidic chips to mass spectrometry[J]. Mass Spectrom Rev, 2015, 34(5): 535-557. [百度学术]
Jiang Y, Wang PC, Locascio LE, et al. Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis[J]. Anal Chem, 2001, 73(9): 2048-2053. [百度学术]
Lee J, Musyimi HK, Soper SA, et al. Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS[J]. J Am Soc Mass Spectrom, 2008, 19(7): 964-972. [百度学术]
Dai YC, Li CY, Yi J, et al. Plasmonic colloidosome-coupled MALDI-TOF MS for bacterial heteroresistance study at single-cell level[J]. Anal Chem, 2020, 92(12): 8051-8057. [百度学术]
Zhang DX, Zhang YJ, Yin F, et al. Microfluidic filter device coupled mass spectrometry for rapid bacterial antimicrobial resistance analysis[J]. Analyst, 2021, 146(2): 515-520. [百度学术]
Zhang DX, Yang Y, Qin Q, et al. MALDI-TOF characterization of protein expression mutation during morphological changes of bacteria under the impact of antibiotics[J]. Anal Chem, 2019, 91(3): 2352-2359. [百度学术]
Zhang DX, Yin F, Qin Q, et al. Molecular responses during bacterial filamentation reveal inhibition methods of drug-resistant bacteria[J]. Proc Natl Acad Sci U S A, 2023, 120(27): e2301170120. [百度学术]