摘要
糖基化是蛋白质最重要的翻译后修饰之一,能够调控蛋白质的电荷态、结构及分子间相互作用等,进而影响其功能。糖基化的高度异质性导致传统的结构解析方法很难对糖蛋白进行全面表征。随着分析技术的发展,质谱在糖蛋白结构解析中发挥了重要作用。蛋白质组学质谱技术可在多肽水平上对复杂、低丰度蛋白质糖基化修饰的化学组成与位点信息进行鉴定。非变性质谱技术(native mass spectrometry,nMS)则直接在完整蛋白水平上揭示聚糖异质性及其对蛋白高级结构和相互作用的调控效应。作为结构质谱的代表性技术,基于离子淌度的nMS受益于离子淌度仪的构象分辨能力和构象去折叠功能,能够在非变性质谱的基础上提供离子的三维动态结构信息,为异构体结构快速鉴定提供不可替代的解决方案。本文重点介绍了两种新兴离子淌度质谱技术,即非变性动态构象分辨质谱技术和糖型分辨结构质谱技术,并以3种常见蛋白体系为例,介绍其在糖蛋白构象研究领域的最新进展。
糖基化(glycosylation)是一种普遍且重要的翻译后修饰类型,在调控蛋白结构、信号传导、免疫应答、胚胎发育等过程中发挥重要作

Figure 1 Classification of protein glycosylatio
糖蛋白结构深度解析一直是结构生物学领域的挑战之一,糖基化位点确定、糖链结构解析以及定量糖型相对丰度等都属于蛋白质糖基化研究范畴。由于聚糖存在较多的同分异构体,单糖组成和连接方式复杂多样,且糖基化连接位点也存在差异,因此糖基化修饰具有较强的宏观异质性与微观异质性。糖基化的异质性导致传统的结构解析方法(如冷冻电镜、X射线晶体衍射)很难对糖蛋白进行全面表
质谱(mass spectrometry,MS)因其灵敏度高、分析速度快和耗样量少等优点,已经成为表征蛋白质糖基化的有力工具,可在完整蛋白、糖肽或游离聚糖水平上对糖蛋白进行解
随着商业化仪器推陈出新式地更新迭代,离子淌度质谱技术(ion mobility-mass spectrometry,IM-MS)在完整蛋白表征方面的技术进展与应用研究报道与日俱
解析糖基化修饰的异质性对于深入了解糖蛋白结构和功能十分重要。基于质谱的糖组学和糖蛋白质组学可直观、准确地解析糖的微观异质性和宏观异质性,但其样品制备过程较为繁琐,对数据库的依赖性较高,且不能提供蛋白高阶结构信
离子淌度质谱是一种将离子淌度仪与质谱联用的二维质谱分析技术,其基本工作原理是待测物离子在电场作用下飞行穿过一定距离的漂移管,并与管中填充的缓冲气体发生碰撞,由于离子的形状、尺寸及所带电荷不同,导致其迁移速率不同,即通过离子淌度池的时间(arrival time distribution,ATD)不同,进而实现快速分离。而ATD可通过Mason-Schamp方程转换为离子结构相关参数“碰撞横截面积”(collisional cross section,CCS),可广泛用于不同实验室的不同仪器测定结果之间的直接对比分
受溶液成分、pH等影响,电喷雾产生的蛋白质一般同时携带多种电荷态,而不同电荷态很可能会呈现不同的构象状态。然而传统的CIU技术一次只筛选一种蛋白质电荷态进行分析。一方面,这种基于单一电荷态的分析模式对于通量、分析速度以及蛋白的整体构象采集均有不同程度的牺牲;另一方面,对于异质性较高、难离子化的糖蛋白而言,随着碰撞电压升高会发生电荷态偏移,基于单一电荷态的分析模式会由于电荷态偏移引起的干扰从而造成较大的误差。因此,Phetsanthad

Figure 2 High-resolution characterization of both conformation (A) and glycoform (B) of bovine transferrin with native AIU-IM-MS strateg
离子淌度质谱具有较灵敏的分离能力,在寡糖区分上具有较大的潜力。例如,Feng
同时,一些特征离子可用来表征糖型修饰。例如,氧鎓离子(oxonium ion)是糖蛋白或糖肽中的单糖或双糖经碎裂得到的碎片离子,可根据其种类和丰度来确认糖型结
Oxonium ion (m/z) | Typ | Chemical formula |
---|---|---|
126.055 |
[HexNAc - C2H6O3 |
[C6H7NO2 |
138.055 |
[HexNAc - CH6O3 |
[C7H8NO2 |
144.065 |
[HexNAc - C2H4O2 |
[C6H10NO3 |
168.066 |
[HexNAc - 2H2O |
[C8H10NO3 |
186.076 |
[HexNAc - H2O |
[C8H12NO4 |
204.087 |
[HexNAc |
[C8H14NO5 |
274.092 |
[Neu5Ac - H2O |
[C11H6NO7 |
292.103 |
[Neu5Ac |
[C11H18NO8 |
366.140 |
[HexHexNAc |
[C14H24NO10 |
aHex:Hexose;HexNAc:N-Acetyl-hexosamine N-acetylhexosamine; Neu5Ac: N-Acetylneuraminic acid; Neu5Gc: N-Hydroxyacetylneuraminic acid
此外,还可通过不同的样品前处理方法辅助解析糖链信息。不同的糖苷水解酶对糖型组成和连接方式具有独特的选择性。糖蛋白经糖苷水解酶处理后,在保持蛋白非变性状态的同时又降低了糖蛋白异质性,利于质谱检测,并可通过相对分子质量偏移确定糖型组成。通过联合使用唾液酸水解酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和O-糖苷酶,可辅助鉴定具有复杂糖基化修饰的人源转铁蛋白、牛源胎球蛋白、促红细胞生成素(erythropoietin,EPO)和人源α1酸性糖蛋白(alpha1-acid glycoprotein,AGP)的糖
大多数蛋白质药物以N-糖修饰为主,包括单克隆抗体(monoclonal antibody,mAb)、激素、生长因子和疫苗。糖基化修饰会影响该类药物的疗效与安全性,因此阐明糖型组成与鉴定修饰位点对药物研发与监管具有重要意
血浆中存在数百种糖蛋白,并具有重要的生理意义,如在FDA批准的血浆蛋白生物标志物中超过三分之一是糖蛋
SARS-CoV-2属于冠状病毒科,为不分节段的单股正链RNA病毒。它编码两个大的重叠开放阅读框(ORF1a和ORF1b),4种结构蛋白(S、E、M和N蛋白),以及9种辅助蛋
目前为止仍无法通过单一方法实现糖蛋白结构信息的完整表征,最近发展的基于IM-MS的非变性动态构象分辨模式和糖型分辨解析模式,在结构分辨率和分析通量方面均有了明显提升,配合高分辨构象操控技术,可在表征精细糖型结构的同时,提供蛋白质的微小动态构象变化和结构稳定性信息。构象操控实验的数据采集模式与数据处理方法的进一步发展也将有效推动糖蛋白结构质谱表征的结构分辨率和分析通量,如将靶向CIU技术发展成非靶向AIU技术后,针对异质性较高的糖蛋白构象分辨能力和分析速度均有显著提升。未来一大发展方向是构象操控技术的规模化,这对于将传统非变性质谱技术拓展至组学水平上应用是关键步骤。同时,还可基于IM-MS数据对蛋白结构进行分子动力学模拟,以更为直观地阐明糖蛋白动态构象变化与构效关
References
Schjoldager KT, Narimatsu Y, Joshi HJ, et al. Global view of human protein glycosylation pathways and functions[J]. Nat Rev Mol Cell Biol, 2020, 21(12): 729-749. [百度学术]
Reily C, Stewart TJ, Renfrow MB, et al. Glycosylation in health and disease[J]. Nat Rev Nephrol, 2019, 15(6): 346-366. [百度学术]
Chatham JC, Zhang JH, Wende AR. Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology[J]. Physiol Rev, 2021, 101(2): 427-493. [百度学术]
Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications[J]. Nat Rev Cancer, 2015, 15(9): 540-555. [百度学术]
Chang VT, Crispin M, Aricescu AR, et al. Glycoprotein structural genomics: solving the glycosylation problem[J]. Structure, 2007, 15(3): 267-273. [百度学术]
Struwe WB, Robinson CV. Relating glycoprotein structural heterogeneity to function: insights from native mass spectrometry[J]. Curr Opin Struct Biol, 2019, 58: 241-248. [百度学术]
Wu D, Robinson CV. Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry[J]. Curr Opin Struct Biol, 2022, 74: 102351. [百度学术]
de Haan N, Yang S, Cipollo J, et al. Glycomics studies using sialic acid derivatization and mass spectrometry[J]. Nat Rev Chem, 2020, 4(5): 229-242. [百度学术]
Chen ZW, Huang JF, Li LJ. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples[J]. Trends Analyt Chem, 2019, 118: 880-892. [百度学术]
Ruhaak LR, Xu GG, Li QY, et al. Mass spectrometry approaches to glycomic and glycoproteomic analyses[J]. Chem Rev, 2018, 118(17): 7886-7930. [百度学术]
Yang Y, Liu F, Franc V, et al. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity[J]. Nat Commun, 2016, 7: 13397. [百度学术]
Čaval T, Buettner A, Haberger M, et al.Discrepancies between high-resolution native and glycopeptide-centric mass spectrometric approaches: a case study into the glycosylation of erythropoietin variants[J]. J Am Soc Mass Spectrom, 2021, 32(8): 2099-2104. [百度学术]
Villafuerte-Vega RC, Li HW, Slaney TR, et al. Ion mobility-mass spectrometry and collision-induced unfolding of designed bispecific antibody therapeutics[J]. Anal Chem, 2023, 95(17): 6962-6970. [百度学术]
Roberts DS, Mann M, Melby JA, et al. Structural O-glycoform heterogeneity of the SARS-CoV-2 spike protein receptor-binding domain revealed by top-down mass spectrometry[J]. J Am Chem Soc, 2021, 143(31): 12014-12024. [百度学术]
Yen HY, Liko I, Gault J, et al. Correlating glycoforms of DC-SIGN with stability using a combination of enzymatic digestion and ion mobility mass spectrometry[J]. Angew Chem Int Ed, 2020, 59(36): 15560-15564. [百度学术]
Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobility-mass spectrometry analysis of large protein complexes[J]. Nat Protoc, 2008, 3(7): 1139-1152. [百度学术]
Li GY, Phetsanthad A, Ma M, et al. Native ion mobility-mass spectrometry-enabled fast structural interrogation of labile protein surface modifications at the intact protein level[J]. Anal Chem, 2022, 94(4): 2142-2153. [百度学术]
Zhu ZK, Desaire H. Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry[J]. Annu Rev Anal Chem, 2015, 8: 463-483. [百度学术]
Kawahara R, Chernykh A, Alagesan K, et al. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis[J]. Nat Methods, 2021, 18(11): 1304-1316. [百度学术]
Wu D, Struwe WB, Harvey DJ, et al. N-glycan microheterogeneity regulates interactions of plasma proteins[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8763-8768. [百度学术]
Wu D, Robinson CV. Native top-down mass spectrometry reveals a role for interfacial glycans on therapeutic cytokine and hormone assemblies[J]. Angew Chem Int Ed, 2022, 61(49): e202213170. [百度学术]
El-Baba TJ, Lutomski CA, Burnap SA, et al. Uncovering the role of N-glycan occupancy on the cooperative assembly of spike and angiotensin converting enzyme 2 complexes: insights from glycoengineering and native mass spectrometry[J]. J Am Chem Soc, 2023, 145(14): 8021-8032. [百度学术]
Laganowsky A, Reading E, Hopper JTS, et al. Mass spectrometry of intact membrane protein complexes[J]. Nat Protoc, 2013, 8(4): 639-651. [百度学术]
Robinson CV. Mass spectrometry: from plasma proteins to mitochondrial membranes[J]. Proc Natl Acad Sci U S A, 2019, 116(8): 2814-2820. [百度学术]
Xia X, Zhu ZJ, Li LJ, et al. Recent progress in protein stereochemical modifications revealed by ion mobility-mass spectrometry[J]. J Chin Mass Spectrom, 2022, 43(5): 580-595. [百度学术]
Tian YW, Han LJ, Buckner AC, et al. Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures[J]. Anal Chem, 2015, 87(22): 11509-11515. [百度学术]
Polasky DA, Dixit SM, Fantin SM, et al. CIUSuite 2: next-generation software for the analysis of gas-phase protein unfolding data[J]. Anal Chem, 2019, 91(4): 3147-3155. [百度学术]
Dixit SM, Polasky DA, Ruotolo BT. Collision induced unfolding of isolated proteins in the gas phase: past, present, and future[J]. Curr Opin Chem Biol, 2018, 42: 93-100. [百度学术]
Phetsanthad A, Li GY, Jeon CK, et al. Comparing selected-ion collision induced unfolding with all ion unfolding methods for comprehensive protein conformational characterization[J]. J Am Soc Mass Spectrom, 2022, 33(6): 944-951. [百度学术]
Polasky DA, Dixit SM, Vallejo DD, et al. An algorithm for building multi-state classifiers based on collision-induced unfolding data[J]. Anal Chem, 2019, 91(16): 10407-10412. [百度学术]
Feng XX, Shu H, Zhang S, et al. Relative quantification of N-glycopeptide sialic acid linkage isomers by ion mobility mass spectrometry[J]. Anal Chem, 2021, 93(47): 15617-15625. [百度学术]
Giles K, Ujma J, Wildgoose J, et al. A cyclic ion mobility-mass spectrometry system[J]. Anal Chem, 2019, 91(13): 8564-8573. [百度学术]
Williamson DL, Bergman AE, Nagy G. Investigating the structure of α/β carbohydrate linkage isomers as a function of group I metal adduction and degree of polymerization as revealed by cyclic ion mobility separations[J]. J Am Soc Mass Spectrom, 2021, 32(10): 2573-2582. [百度学术]
Oganesyan I, Hajduk J, Harrison JA, et al. Exploring gas-phase MS methodologies for structural elucidation of branched N-glycan isomers[J]. Anal Chem, 2022, 94(29): 10531-10539. [百度学术]
Peterson TL, Nagy G. Toward sequencing the human milk glycome: high-resolution cyclic ion mobility separations of core human milk oligosaccharide building blocks[J]. Anal Chem, 2021, 93(27): 9397-9407. [百度学术]
Toghi Eshghi S, Yang WM, Hu YW, et al. Classification of tandem mass spectra for identification of N- and O-linked glycopeptides[J]. Sci Rep, 2016, 6: 37189. [百度学术]
Halim A, Westerlind U, Pett C, et al. Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides[J]. J Proteome Res, 2014, 13(12): 6024-6032. [百度学术]
Chen SY, Wu D, Robinson CV, et al. Native mass spectrometry meets glycomics: resolving structural detail and occupancy of glycans on intact glycoproteins[J]. Anal Chem, 2021, 93(30): 10435-10443. [百度学术]
Goumenou A, Delaunay N, Pichon V. Recent advances in lectin-based affinity sorbents for protein glycosylation studies[J]. Front Mol Biosci, 2021, 8: 746822. [百度学术]
Wu D, Li JW, Struwe WB, et al. Probing N-glycoprotein microheterogeneity by lectin affinity purification-mass spectrometry analysis[J]. Chem Sci, 2019, 10(19): 5146-5155. [百度学术]
Tian YW, Ruotolo BT.Collision induced unfolding detects subtle differences in intact antibody glycoforms and associated fragments[J].Int J Mass Spectrom, 2018, 425: 1-9. [百度学术]
Silsirivanit A.Glycosylation markers in cancer[J].Adv Clin Chem, 2019, 89: 189-213. [百度学术]
Yang FJ, Hsieh CY, Shu KH, et al. Plasma leucine-rich α-2-glycoprotein 1 predicts cardiovascular disease risk in end-stage renal disease[J]. Sci Rep, 2020, 10(1): 5988. [百度学术]
Serie DJ, Myers AA, Haehn DA, et al. Novel plasma glycoprotein biomarkers predict progression-free survival in surgically resected clear cell renal cell carcinoma[J]. Urol Oncol, 2022, 40(4): 168.e11-168.e19. [百度学术]
Wu D, Struwe WB, Harvey DJ, et al. N-glycan microheterogeneity regulates interactions of plasma proteins[J].Proc Natl Acad Sci U S A, 2018, 115(35): 8763-8768. [百度学术]
Peng Y, Du N, Lei YQ, et al. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design[J]. EMBO J, 2020, 39(20): e105938. [百度学术]
Grant OC, Montgomery D, Ito K, et al. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition[J]. Sci Rep, 2020, 10(1): 14991. [百度学术]
Rudd P, Elliott T, Cresswell P, et al. Glycosylation and the immune system[J].Science, 2001, 291(5512): 2370-2376. [百度学术]
Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding[J]. Cell, 2020, 182(5): 1295-1310.e20. [百度学术]
Yan RH, Zhang YY, Li YN, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367(6485): 1444-1448. [百度学术]
Gong YQ, Qin SD, Dai LZ, et al. The glycosylation in SARS-CoV-2 and its receptor ACE2[J].Signal Transduct Target Ther, 2021, 6(1): 396. [百度学术]
Wyttenbach T, Pierson NA, Clemmer DE, et al. Ion mobility analysis of molecular dynamics[J].Annu Rev Phys Chem, 2014, 65: 175-196. [百度学术]
Gupta K, Donlan JAC, Hopper JTS, et al. The role of interfacial lipids in stabilizing membrane protein oligomers[J]. Nature, 2017, 541(7637): 421-424. [百度学术]