摘要
液相色谱多级质谱联用(LC-MS/MS)的多反应监测模式(multiple-reaction monitoring,MRM)已经成为复杂体系中多成分同步定量分析的金标准,广泛应用于药品、中药、食品等各个领域。然而,由于选择性的限制,在对复杂基质中痕量化学成分定量时,MRM无法有效降低噪音或基质干扰,灵敏度不足。多级多反应监测模式(multiple-reaction monitoring cubed,MR
近年来,由于其高灵敏度、高特异性、高效分离等优势,液相色谱多级质谱联用(LC-MS/MS)被广泛应用于生命科学、药物、食品科学和环境科学等领域的定性、定量分析中。尤其是超高效液相色谱(UHPLC)的快速发展,实现了在数分钟内单次分析数百个化合物,使得LC-MS/MS兼具高通量的优势。多反应监测模式(multiple-reaction monitoring,MRM)主要依靠三重四极杆质谱(QqQ-MS)实现。由于其重复性好、精密度和准确度高等优势,已经成为复杂基质中痕量化学成分分析的强有力工具。LC-MRM被认为是小分子定量分析的“金标准
离子阱质谱(ion trap MS,IT-MS)具有离子聚焦、共振激发、共振弹射、多级碎裂等多种功能,可以实施多级质谱(M
多级多反应监测(multiple-reaction monitoring tubed,MR
鉴于LC-MR
M

Figure 1 Schematic representation of the ion path of Qtrap-MS instrument (A), linear ion trap (B) and MR
采用LC-M
M
通过相关参数优化,可以提高分析物MR
DP控制orifice上的电压,从而控制orifice和Qjet之间离子的聚簇能力。DP电压越高,传递给离子的能量就越高,适当的DP可以避免溶剂分子的吸附,但DP过高会引发源内裂解,导致目标化合物碎
EE值描述了LIT对q2碰撞产生的子离子施加的张力,对子离子的裂解效率影响最
激发时间即施加激发能量的时间。如果激发时间过短,离子在离子阱中无法充分裂解,碎片离子过少甚至无法产生碎片。反之,则碎片过多,影响目标孙离子的产生。LIT填充时间为子离子在LIT中的累积时间,包括动态和固定填充时间两种设置方式。动态填充时间根据来自离子源的离子通量自动调节填充时间使碎片离子在离子阱中积累。一般而言,MR
MR
前述可知,MR
另外,Q0为高压腔内仅射频的四极杆离子导引,可通过高压碰撞聚焦技术提高离子聚焦能力,更多气体分子与离子碰撞,减少离子路径空间,使离子的传输最大化。设置Q0捕获(Q0 trapping)也被用来增加灵敏度和占空比,通过增加聚焦层,从离子源到分析器的离子飞行时间被放
LC-MR
生物标志物是指可被客观测量并能用于评价正常生物过程、病理过程及治疗反应的指标,对临床治疗、疾病诊断与分型、疾病发展进程等具有重要指导意
由于高选择性和高灵敏度的优点,LC-MR
LC-MR
小分子类化合物在CID裂解时产生碎片过小而无法被有限的质谱扫描范围识别或无法裂解产生碎片,故在进行LC-MS/MS分析时,仅以前体离子构建离子对进行MRM或MR
迄今为止,大麻仍是世界上最常用的毒品之一。主要的神经兴奋活性成分为四氢大麻酚(tetrahydrocannabinol,THC),THC及其代谢产物
农药、兽药的使用虽然极大地促进了农业、畜牧业的发展,但其滥用导致农药、兽药残留超标,引发食品安全问题,对人类健康具有潜在威胁。LC-MS/MS已被中国、欧盟以及其他多个国家地区用于农药、兽药残留分析。灵敏度更高、选择性更强的LC-MR
单端孢霉烯族类霉菌毒素(tricothecenes)是由各种真菌产生的有毒次级代谢
吡咯里西啶类生物碱(pyrrolizidine alkaloids,PAs)是植物中一类毒性成分,广泛分布于菊科、豆科、紫草科植物中。将有毒物种作为代茶饮、传统药物或食用含有PAs种子污染的谷物可能会引起人体毒性反应。Chung
食物过敏在过去几十年中已成为全球广泛关注的问题。甲壳类、贝类、鸡蛋、坚果和小麦/麸质等是过敏患者的高风险食物,对食物中的过敏原进行定量并给出指导含量对于保障食品安全至关重要。由于ELISA和PCR检测过敏原具有局限性,LC-MS/MS逐步成为特异性、稳健的蛋白质检测方式。但由于基质的复杂性或蛋白丰度低等原因,仍需建立选择性更强、灵敏度更高的检测方式。Korte
工业、农业等各方面的发展给人类生活带来便利的同时,也给环境带来了污染。环境分析基质如水、淤泥等组成复杂,干扰多,待测物含量低,因此灵敏度高、选择性好的分析方法对复杂环境基质中的污染物分析至关重要。然而传统的LC-MRM分析策略在某些应用场景下也无法实现高灵敏的检测。LC-MR
除上述应用领域外,LC-MR
LC-MS/MS具有灵敏度高、选择性好、通量高等优势。然而,在仅采用M
然而,LC-MR
References
Ferreirós N, Dresen S, Alonso RM, et al.Validated quantitation of angiotensin II receptor antagonists (ARA-II) in human plasma by liquid-chromatography-tandem mass spectrometry using minimum sample clean-up and investigation of ion suppression[J]. Ther Drug Monit, 2007, 29(6): 824-834. [百度学术]
Richards KH, Monk R, Renko K, et al. A combined LC-MS/MS and LC-M
Aydin E, Drotleff B, Noack H, et al. Fast accurate quantification of salivary cortisol and cortisone in a large-scale clinical stress study by micro-UHPLC-ESI-MS/MS using a surrogate calibrant approach[J].J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1182: 122939. [百度学术]
Guironnet A, Wiest L, Vulliet E.Advantages of MS/MS/MS (MR
Duan X, Lu D, Zheng X, et al. Development and validation of an LC-MS/MS assay with multiple stage fragmentation for the quantification of alachlor in McF-7 cells[J].J Chromatogr B Analyt Technol Biomed Life Sci, 2023, 1214: 123550. [百度学术]
Berna M, Schmalz C, Duffin K, et al. Online immunoaffinity liquid chromatography/tandem mass spectrometry determination of a type II collagen peptide biomarker in rat urine: Investigation of the impact of collision-induced dissociation fluctuation on peptide quantitation[J]. Anal Biochem, 2006, 356(2): 235-243. [百度学术]
Manjunath Swamy J, Kamath N, Radha Shekar AK, et al. Sensitivity enhancement and matrix effect evaluation during summation of multiple transition pairs-case studies of clopidogrel and ramiprilat[J]. Biomed Chromatogr, 2010, 24(5): 528-534. [百度学术]
Campbell JL, Collings BA, Yves Le Blanc JC, et al. A novel M
Mayya V, Rezaul K, Cong YS, et al. Systematic comparison of a two-dimensional ion trap and a three-dimensional ion trap mass spectrometer in proteomics[J]. Mol Cell Proteomics, 2005, 4(2): 214-223. [百度学术]
Douglas DJ, Frank AJ, Mao D. Linear ion traps in mass spectrometry[J]. Mass Spectrom Rev, 2005, 24(1): 1-29. [百度学术]
Botitsi HV, Garbis SD, Economou A, et al. Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices[J]. Mass Spectrom Rev, 2011, 30(5): 907-939. [百度学术]
Hager JW. A new linear ion trap mass spectrometer[J]. Rapid Commun Mass Spectrom, 2002, 16(6): 512-526. [百度学术]
Cha B, Blades M, Douglas DJ. An interface with a linear quadrupole ion guide for an electrospray-ion trap mass spectrometer system[J]. Anal Chem, 2000, 72(22): 5647-5654. [百度学术]
Miyachi A, Murase T, Yamada Y, et al. Quantitative analytical method for determining the levels of gastric inhibitory polypeptides GIP1-42 and GIP3-42 in human plasma using LC-MS/MS/MS[J]. J Proteome Res, 2013, 12(6): 2690-2699. [百度学术]
Quinete N, Bertram J, Reska M, et al. Highly selective and automated online SPE LC-M
Hager JW, Yves Le Blanc JC. Product ion scanning using a Q-q-Q linear ion trap (Q TRAP) mass spectrometer[J]. Rapid Commun Mass Spectrom, 2003, 17(10): 1056-1064. [百度学术]
Sandra K, Devreese B, Van Beeumen J, et al. The Q-Trap mass spectrometer, a novel tool in the study of protein glycosylation[J]. J Am Soc Mass Spectrom, 2004, 15(3): 413-423. [百度学术]
Snyder DT, Peng WP, Cooks RG. Resonance methods in quadrupole ion traps[J]. Chem Phys Lett, 2017, 668: 69-89. [百度学术]
Collings BA, Stott WR, Londry FA. Resonant excitation in a low-pressure linear ion trap[J]. J Am Soc Mass Spectrom, 2003, 14(6): 622-634. [百度学术]
Li C. Research on high sensitivity quadrupole-inear ion trap tandem mass spectrometry(高灵敏度四极杆-线形离子阱串联质谱技术研究)[D]. Changchun: Jilin University, 2022. [百度学术]
Sordet M, Berlioz-Barbier A, Buleté A, et al. Quantification of emerging micropollutants in an amphipod crustacean by nanoliquid chromatography coupled to mass spectrometry using multiple reaction monitoring cubed mode[J]. J Chromatogr A, 2016, 1456: 217-225. [百度学术]
McCaffery P, Evans J, Koul O, et al. Retinoid quantification by HPLC/M
Leuthold LA, Grivet C, Allen M, et al. Simultaneous selected reaction monitoring, MS/MS and M
Ma W, Xu Y, Wang SY, et al. Research on accurate quantitation technique using liquid chromatography coupled with triple quadrupole mass spectrometry and experiment optimization—take a novel diuretic as an example[J]. J Chin Pharm Sci, 2022, 31(3): 184. [百度学术]
Song Q, Li J, Huo H, et al. Retention time and optimal collision energy advance structural annotation relied on LC-MS/MS: an application in metabolite identification of an antidementia agent namely echinacoside[J]. Anal Chem, 2019, 91(23): 15040-15048. [百度学术]
Liu W, Li W, Zhang P, et al. Quality structural annotation for the metabolites of chlorogenic acid in rat[J]. Food Chem, 2022, 379: 132134. [百度学术]
Cao Y, Chai C, Chang A, et al. Optimal collision energy is an eligible molecular descriptor to boost structural annotation: an application for chlorogenic acid derivatives-focused chemical profiling[J]. J Chromatogr A, 2020, 1609: 460515. [百度学术]
Cao Y, Li W, Chen W, et al. Squared energy-resolved mass spectrometry advances quantitative bile acid submetabolome characterization[J]. Anal Chem, 2022, 94(44): 15395-15404. [百度学术]
Zeng W, Bateman KP.Quantitative LC-MS/MS.1.Impact of points across a peak on the accuracy and precision of peak area measurements[J]. J Am Soc Mass Spectrom, 2023, 34(6): 1136-1144. [百度学术]
Sordet M, Buleté A, Vulliet E. A rapid and easy method based on hydrophilic interaction chromatography coupled with tandem mass spectrometry (HILIC-MS/MS/MS) to quantify iodinated X-ray contrast in wastewaters[J]. Talanta, 2018, 190: 480-486. [百度学术]
Lopukhov LV, Balandina AV, Nigmatullina LS, et al. Evaluation of multiple reaction monitoring cubed performed by a quadrupole-linear ion trap mass spectrometer for quantitative determination of 6-sulfatoxymelatonin in urine[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2022, 1190: 123094. [百度学术]
Vonk RJ, Vaast A, Eeltink S, et al. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography[J]. J Chromatogr A, 2014, 1359: 162-169. [百度学术]
Muscat Galea C, Didion D, Clicq D, et al. Method optimization for drug impurity profiling in supercritical fluid chromatography: Application to a pharmaceutical mixture[J]. J Chromatogr A, 2017, 1526: 128-136. [百度学术]
Korte R, Brockmeyer J. MR
Jaffuel A, Lemoine J, Aubert C, et al. Optimization of liquid chromatography-multiple reaction monitoring cubed mass spectrometry assay for protein quantification: application to aquaporin-2 water channel in human urine[J]. J Chromatogr A, 2013, 1301: 122-130. [百度学术]
Guo JJ, Zhou W, Su WQ. Application strategy of mass spectrometry in protein biomarker discovery[J]. Chin J Mod Appl Pharm(中国现代应用药学), 2022, 39(23): 3183-3188. [百度学术]
van Faassen M, van der Veen A, van Ockenburg S, et al. Mass spectrometric quantification of urinary 6-sulfatoxymelatonin: age-dependent excretion and biological variation[J]. Clin Chem Lab Med, 2020, 59(1): 187-195. [百度学术]
Gaudl A, Kratzsch J, Bae YJ, et al. Liquid chromatography quadrupole linear ion trap mass spectrometry for quantitative steroid hormone analysis in plasma, urine, saliva and hair[J]. J Chromatogr A, 2016, 1464: 64-71. [百度学术]
Jones JW, Pierzchalski K, Yu J, et al. Use of fast HPLC multiple reaction monitoring cubed for endogenous retinoic acid quantification in complex matrices[J]. Anal Chem, 2015, 87(6): 3222-3230. [百度学术]
Szeitz A, Nguyen TA, Riggs KW, et al. A validated assay to quantitate serotonin in lamb plasma using ultrahigh-performance liquid chromatography-tandem mass spectrometry: applications with LC/M
Wright MJ, Thomas RL, Stanford PE, et al. Multiple reaction monitoring with multistage fragmentation (MR
Kumar A, Gangadharan B, Zitzmann N. Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1033/1034: 278-286. [百度学术]
Simon R, Lemoine J, Fonbonne C, et al. Absolute quantification of podocin, a potential biomarker of glomerular injury in human urine, by liquid chromatography-multiple reaction monitoring cubed mass spectrometry[J]. J Pharm Biomed Anal, 2014, 94: 84-91. [百度学术]
Pailleux F, Beaudry F. Evaluation of multiple reaction monitoring cubed for the analysis of tachykinin related peptides in rat spinal cord using a hybrid triple quadrupole-linear ion trap mass spectrometer[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 947/948: 164-167. [百度学术]
Vaclavik L, Krynitsky AJ, Rader JI. Quantification of aristolochic acids I and II in herbal dietary supplements by ultra-high-performance liquid chromatography-multistage fragmentation mass spectrometry[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2014, 31(5): 784-791. [百度学术]
Ren T, Zhang Z, Fawcett JP, et al. Micro-solid phase extraction and LC-M
Cesari N, Fontana S, Montanari D, et al. Development and validation of a high-throughput method for the quantitative analysis of D-amphetamine in rat blood using liquid chromatography/M
Yin L, Ji Z, Cao H, et al. Comparison of LC-M
Ma D, Ji Z, Cao H, et al. LC-M
Sun Q, Cao H, Liu Y, et al. Comparison of LC-M
Dziadosz M, Klintschar M, Teske J. Imatinib quantification in human serum with LC-M
Dziadosz M. The application of multiple analyte adduct formation in the LC-M
Dziadosz M. γ-Hydroxybutyrate analysis in human serum with liquid chromatography-tandem mass spectrometry on the basis of M
Shi X, Liu M, Sun M, et al.Development of a LC-ESI-M
Stone NL, Murphy AJ, England TJ, et al. A systematic review of minor phytocannabinoids with promising neuroprotective potential[J]. Br J Pharmacol, 2020, 177(19): 4330-4352. [百度学术]
Dulaurent S, Gaulier JM, Imbert L, et al. Simultaneous determination of Δ9-tetrahydrocannabinol, cannabidiol, cannabinol and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in hair using liquid chromatography-tandem mass spectrometry[J].Forensic Sci Int, 2014, 236: 151-156. [百度学术]
Cho HS, Cho B, Sim J, et al. Detection of 11-nor-9-carboxy-tetrahydrocannabinol in the hair of drug abusers by LC-MS/MS analysis[J]. Forensic Sci Int, 2019, 295: 219-225. [百度学术]
Park M, Kim J, Park Y, et al. Quantitative determination of 11-nor-9-carboxy-tetrahydrocannabinol in hair by column switching LC-ESI-MS(3)[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 947/948: 179-185. [百度学术]
Thieme D, Sachs U, Sachs H, et al. Significant enhancement of 11-hydroxy-THC detection by formation of picolinic acid esters and application of liquid chromatography/multi stage mass spectrometry (LC-MS(3)): application to hair and oral fluid analysis[J]. Drug Test Anal, 2015, 7(7): 577-585. [百度学术]
Thieme D, Sachs H, Uhl M. Proof of cannabis administration by sensitive detection of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid in hair using selective methylation and application of liquid chromatography- tandem and multistage mass spectrometry[J]. Drug Test Anal, 2014, 6(1/2): 112-118. [百度学术]
Hehet P, Franz T, Kunert N, et al. Fast and highly sensitive determination of tetrahydrocannabinol (THC) metabolites in hair using liquid chromatography-multistage mass spectrometry (LC-M
Zubaidi FA, Choo YM, Tan GH, et al. A novel liquid chromatography tandem mass spectrometry technique using multi-period-multi-experiment of MRM-EPI-MR
Jung HN, Park DH, Choi YJ, et al. Simultaneous quantification of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in animal and aquaculture products using liquid chromatography-tandem mass spectrometry[J].Front Nutr, 2022, 8: 812803. [百度学术]
Faulkner DV, Cantley ML, Kennedy DG, et al.MR
Sun L, Ye N, Wang YL, et al. Determination of β-agonists residues in complex animal derived food by LC-MS/MS/MS in high selectivity MR
Ye L, Liu JC, Wang YL, et al.Development of a three-compartment toxicokinetic model for T-2 toxin in shrimp by blindfold particle swarm optimization algorithm[J]. Ecotoxicol Environ Saf, 2021, 208: 111698. [百度学术]
Lim CW, Tai SH, Lee LM, et al. Analytical method for the accurate determination of tricothecenes in grains using LC-MS/MS: a comparison between MRM transition and M
Chung SWC, Lam CH. Development of an analytical method for analyzing pyrrolizidine alkaloids in different groups of food by UPLC-MS/MS[J]. J Agric Food Chem, 2018, 66(11): 3009-3018. [百度学术]
He JZ, Huang LZ. Determination of aconitine in medicated wine by LC-M
Korte R, Monneuse JM, Gemrot E, et al. New high-performance liquid chromatography coupled mass spectrometry method for the detection of lobster and shrimp allergens in food samples via multiple reaction monitoring and multiple reaction monitoring cubed[J]. J Agric Food Chem, 2016, 64(31): 6219-6227. [百度学术]
von Bargen C, Brockmeyer J, Humpf HU. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food[J]. J Agric Food Chem, 2014, 62(39): 9428-9435. [百度学术]
von Bargen C, Dojahn J, Waidelich D, et al. New sensitive high-performance liquid chromatography-tandem mass spectrometry method for the detection of horse and pork in halal beef[J]. J Agric Food Chem, 2013, 61(49): 11986-11994. [百度学术]
Hartung NM, Mainka M, Pfaff R, et al. Development of a quantitative proteomics approach for cyclooxygenases and lipoxygenases in parallel to quantitative oxylipin analysis allowing the comprehensive investigation of the arachidonic acid cascade[J].Anal Bioanal Chem, 2023, 415(5): 913-933. [百度学术]
Musile G, Mazzola M, Shestakova K, et al. A simple and robust method for broad range screening of hair samples for drugs of abuse using a high-throughput UHPLC-Ion Trap MS instrument[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020, 1152: 122263. [百度学术]
Hoffner G, van der Rest G, Dansette PM, et al. The end product of transglutaminase crosslinking: simultaneous quantitation of [nepsilon-(gamma-glutamyl) lysine]and lysine by HPLC-M
Arioli F, Gamberini MC, Pavlovic R, et al. Quantification of cortisol and its metabolites in human urine by LC-M
Park J, Yu F, Fulcher JM, et al. Evaluating linear ion trap for MS3-based multiplexed single-cell proteomics[J]. Anal Chem, 2023, 95 (3): 1888-1898. [百度学术]