摘要
腺相关病毒(adeno-associated virus,AAV)是一种基因治疗中常用的病毒载体。由于其安全性较高且能够靶向多种细胞,在临床前和临床研究中得到了较多的应用。不过在设计和生产的过程中,AAV载体有着诸多会影响其安全性和疗效的关键质量属性。生物质谱技术的发展和应用为生物大分子的研究提供了一个便捷的平台,尤其是在蛋白质序列、结构和相互作用方面。对于AAV载体而言,质谱技术可以实现衣壳蛋白比率、翻译后修饰、血清型、空衣壳比率的测定或表征,从而协助对AAV载体的质量控制。与现有方法相比,质谱技术具有样品需求量少、分析快速灵敏、适用于完整AAV载体的分析和质量分辨率高的优点,并且可以区分空衣壳、满衣壳和部分包封的衣壳。未来,通过将更加高效的蛋白质分离技术与质谱技术联用、开发新的信息处理软件平台和新的质谱检测方法,质谱技术有望在AAV载体的设计和生产中发挥更加重要的作用。
基因治疗是指为了治疗目的而修改操纵基因表达或改变活细胞的基因,基因治疗的方式可以划分基因补充和基因编辑,基因补充是指将遗传物质导入需要治疗的靶细胞,基因编辑是指对细胞已有的缺陷基因进行修改和调控,但无论哪种方式都需要依赖特定的递送载体才能完
AAV是一种非包膜单链DNA病毒,属于细小病毒科的细小病毒属。AAV需要辅助病毒(例如:腺病毒和疱疹病毒)的共同感染才能复制,因此其致病性较

Figure 1 Types of adeno-associated virus (AAV) serotype
野生型的AAV基因大小约为4 700 bp,AAV基因组主要由反向重复序列(inverted terminal repeats, ITRs)和2个ITR之间的2个开放阅读框(open reading frame, ORF)组成,左侧的为编码非结构蛋白的Rep阅读框,右侧的为编码结构蛋白(VP1、VP2、VP3)的Cap阅读框编码,这3种基因的主要功能是完成AAV的复制与组
Ogden
传统的rAAV生产通常涉及“三重转染”方法。三联转染组件由一个编码转基因的质粒、一个含有腺病毒5型(Ad5)辅助基因(即E1a/b、E2a、E4和VA RNA)或其等同物的辅助质粒和另一个编码rAAV Rep和Cap蛋白的质粒组

Figure 2 Schematic diagram of AAV gene structure and rAAV productio
在衣壳结构方面,AAV是由60个衣壳蛋白(VP)单体排列成五聚亚结构组装而成的直径为20~26 nm的二十面体衣壳,每个衣壳含有3个高度同源的VP (VP1、VP2和VP3),比例为1∶1∶10,3种VP具有相同的C端,其中VP2(约65 kD)包括VP3(约60 kD)的整个氨基酸序列,是VP3的N端延伸,VP1(约80 kD)则是VP2的N端延

Figure 3 Schematic diagram of the 20-hedron structure of parvovirus
目前rAAV载体在基因治疗方面得到了较多的研究和应用。基于rAAV的基因治疗药物Glybera用于治疗脂蛋白脂肪酶缺乏症、Luxturna用于治疗遗传性视网膜营养不良症和Zolgensma用于治疗致命性脊髓性肌萎缩症,分别于2012年、2017年和2019年获批上
据报道,VP1、VP2和VP3的相对表达水平可以受到生产方法的影响,并可能偏离1∶1∶10的比例,在某些情况下可能会导致传染性降
蛋白质翻译后修饰是一个或者多个氨基酸残基在酶的作用下,被修饰上了不同的基团,蛋白质的生化性质也会因此变化。对于病毒来说,衣壳蛋白的翻译后修饰可能会改变病毒感染特性和生命周
而且随着PTMs位点的研究不断开展,各种PTMs对于AAV载体用于基因治疗的影响也逐渐被实验阐明。如磷酸化、脱酰胺化、泛素化和SUMO化,被报道会影响转导效
尽管不同AAV血清型之间的VP序列比较相似,但是不同血清型对组织的趋向性有所不同,清除的半衰期也不同,此外引起的免疫反应、转导效率也有差
组织倾向性反映了不同血清型和糖基受体之间特定相互作用。例如,AAV1的α2,3和α2,6 N-linked唾液酸(SIA);HSPG用于AAV2、AAV3和AAV13
AAV在被机体清除后仍有活性,且不同血清型清除所需要的时间不同,例如AAV2/8在2周后就无法在精液中检测到,而AAV5在22周时仍可以在精液中被检测
虽然rAAV的免疫原性较低,但是目前关于AAV导致的免疫反应却时常有报道,据报道rAAV给药期间的宿主免疫反应限制了人类长期的转基因表达,而产生的免疫反应与AAV的血清型有着直接关
在AAV载体生产的过程中还会产生未包裹目标DNA的空衣壳病毒颗粒和包裹部分截断或者非目标基因的病毒颗粒,通过透射电子显微镜(TEM)可以看到,空衣壳的水平可以在10% ~ 90%之间变化,这可能是由衣壳组装的随机性导致
目前,MS(质谱)法在生物制药和蛋白质等大分子分析上已经得到了广泛的应
本文侧重于现有质谱方法在AAV载体制剂的衣壳比率、翻译后修饰、AAV血清型表征和空白衣壳比率上的应用。目前用于检测衣壳比率的常用方法为凝胶电泳法,但是固有的伪影、染色差异以及染色的条带强度与衣壳蛋白之间关系尚未阐明限制了该方法的准确
目前对VP化学计量学的评价主要采用电泳方法,尤其是十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE),采用SYPRO Ruby染料进行银染或荧光染色可提高VP条带检测的灵敏
MS在估计AAV中VP比率方面的效用已被证明与基于LC的分离和基于CGE的技术相结
亲水作用色谱(HILIC)是反相色谱(RPLC)的一种补充方法,已经被广泛应用于极性物质的分
非变性质谱(native MS)是研究大分子和蛋白质及其配体复合物的重要手段,因为它保留了相互作用之间的非共价作用

Figure 4 Simulated mass spectra for AAV9, showing the convoluted ion signals of the 69 967 different ion species shown in a) at resolutions, corresponding to transient times of 32 ms and 128 ms. Each plot shows (top to bottom) the simulated mass spectra before and after baseline correction with their experimental counterpart. Experimental data was recorded by transient averaging, thereby removing the unresolved regions presented in the non-baseline correcte
MS对于完整蛋白和肽段水平的分析都可以用于分析AAV衣壳蛋白的翻译后修
利用CE(毛细管电泳)分离技术,Zhang

Figure 5 PTMs between different batches of AAV
除此之外,基于PTMs的研究结果,通过蛋白质工程来设计改善AAV衣壳蛋白,可以使得AAV的转导效率得到提高,半衰期得到延长。Giles
AAV血清型鉴定通常通过酶联免疫吸附试验(ELISA)或Western blot方法进行。然而,这些方法受到血清型特异性抗体可用性的限制,可能不足以区分具有高序列同源性的血清型,这一问题将不可避免地因工程化AAV血清型数量的迅速增长而复杂
基于质谱(MS)的方法在AAV血清型鉴定中的应用越来越多,它们可用于分析完整蛋白或VP的肽图谱。后者能够明确区分衣壳蛋白氨基酸序列,它在氨基酸序列水平上提供了高可信度的衣壳鉴别。这是目前区分VPs相对分子质量差异小于10 D的血清型所必需的。例如,AAV1和AAV6的VP2和VP3氨基酸序列高度相似,相对分子质量差仅为2
有多种方法可以确定满AAV衣壳和空AAV衣壳之间的比率。其中一种方法是通过用现有qPCR数据得到的基因组载体数除以ELISA数据得到的总衣壳数来确定完整衣壳在总衣壳中的百分比但是,这种方法缺乏足够的数据准确性和精密
电荷检测质谱(CDMS)是一种单粒子方法,它同时测量单个离子的m/z和电荷(z),以直接确定其相对分子质量。带电粒子的通过会产生一个信号,然后由电荷敏感放大器检测到。典型的分析包括对数千个粒子的单独测量,然后绘制成质量直方图,显示样品的相对分子质量分布和各自的丰

Figure 6 Representative mass distribution and charge-to-mass scatter plots recorded after incubation at 80 °C for 15 mi
正如前文所述,质谱正在成为生物制药行业分析AAV基因治疗产品的关键表征技术之一。MS在分析AAV载体的衣壳比率、翻译后修饰、血清型、空壳率方面展现出了其独特的优势,不仅能在完整蛋白的水平上分析AAV载体,也能在肽段水平上分析AAV的衣壳。随着新的质谱电离技术和上游分离技术的发展,CDMS等先进技术将在AAV分析中发挥越来越重要的作用。MS仪器和数据分析软件的性能的增强,也能实现对于AAV组装规律的揭示、批次间的快速比较和高通量的载体质量检测。而将MS技术和众多的分离技术正交可以实现对于AAV蛋白质氨基酸序列的高分辨表征。未来随着AAV生产工艺和应用的发展,MS技术有望在生产过程的各个阶段实现对于AAV载体质量的实时监控。同时作为一种表征技术,可以用于指导AAV载体的设计过程。AAV载体在转导过程中面临着适应性免疫的限制,其免疫原性也会增加治疗过程中的不良反
References
Zhang AZ, Zhang JX, Zhang JF. Application and prospect of gene therapy for fundus vascular diseases[J]. Int Eye Sci (国际眼科杂志), 2023, 23(3): 400-406. [百度学术]
Li MQ, Wei LP, Tao QY, et al. Application status and research progress on safety of gene therapy delivery vectors[J]. Chin J Pharm (中国医药工业杂志), 2022, 53(12): 1671-1682. [百度学术]
Fu Q. , Polanco A. , Lee Y. S. , et al. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing[J/OL]. Biotechnology and Bioengineering, 2023[2023-06-16]. https://www. webofscience. com/wos/alldb/fullrecord/WOS:000978645100001. [百度学术]
Xu YY. Current status and challenges of gene therapy products[J]. China Biotechnol (中国生物工程杂志), 2020, 40(12): 95-103. [百度学术]
Zhu LF, Wang ZJ. Analysis of global gene therapy drug development status[J]. Prog Pharm Sci (药学进展), 2022, 46(5): 325-338. [百度学术]
Li YH, Li W. Advances in gene therapy for rare diseases[J]. J Rare Uncommon Dis (罕少疾病杂志), 2023, 30(3): 109-112. [百度学术]
Large EE, Silveria MA, Zane GM, et al. Adeno-associated virus (AAV) gene delivery: dissecting molecular interactions upon cell entry[J]. Viruses, 2021, 13(7): 1336. [百度学术]
Chen P, Zhang LJ, Li N. Progress in research on adeno-associated virus vectors[J]. Chin J Biol(中国生物制品学杂志), 2022, 35(4): 500-507. [百度学术]
Pipe S, Leebeek FWG, Ferreira V, et al. Clinical considerations for capsid choice in the development of liver-targeted AAV-based gene transfer[J]. Mol Ther Methods Clin Dev, 2019, 15: 170-178. [百度学术]
Mietzsch M, Jose A, Chipman P, et al. Completion of the AAV structural atlas: serotype capsid structures reveals clade-specific features[J]. Viruses, 2021, 13(1): 101. [百度学术]
Zhao LQ, Xi B, Peng HS. Advances on research of adeno-associated virus vectors[J]. Curr Biotechnol (生物技术进展), 2012, 2(2): 110-115. [百度学术]
Wu Y, Mei T, Jiang LY, et al. Development of versatile and flexible Sf9 packaging cell line-dependent OneBac system for large-scale recombinant adeno-associated virus production[J]. Hum Gene Ther Methods, 2019, 30(5): 172-183. [百度学术]
Maurer AC, Pacouret S, Cepeda Diaz AK, et al. The assembly-activating protein promotes stability and interactions between AAV’s viral proteins to nucleate capsid assembly[J]. Cell Rep, 2018, 23(6): 1817-1830. [百度学术]
Tse LV, Moller-Tank S, Meganck RM, et al. Mapping and engineering functional domains of the assembly-activating protein of adeno-associated viruses[J]. J Virol, 2018, 92(14): e00393-e00318. [百度学术]
Maurer AC, Cepeda Diaz AK, Vandenberghe LH. Residues on adeno-associated virus capsid lumen dictate interactions and compatibility with the assembly-activating protein[J]. J Virol, 2019, 93(7): e02013-e02018. [百度学术]
Ogden PJ, Kelsic ED, Sinai S, et al. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design[J]. Science, 2019, 366(6469): 1139-1143. [百度学术]
Galibert L, Hyvönen A, Eriksson RAE, et al. Functional roles of the membrane-associated AAV protein MAAP[J]. Sci Rep, 2021, 11(1): 21698. [百度学术]
Huang XP, Wang X, Ren YX, et al. Reactive oxygen species enhance rAAV transduction by promoting its escape from late endosomes[J]. Virol J, 2023, 20(1): 2. [百度学术]
Hamilton BA, Wright JF. Challenges posed by immune responses to AAV vectors: addressing root causes[J]. Front Immunol, 2021, 12: 675897. [百度学术]
Urabe M, Ding CT, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors[J]. Hum Gene Ther, 2002, 13(16): 1935-1943. [百度学术]
Arriaga I, Navarro A, Etxabe A, et al. Cellular and structural characterization of VP1 and VP2 knockout mutants of AAV3B serotype and implications for AAV manufacturing[J]. Hum Gene Ther, 2022, 33(21/22): 1142-1156. [百度学术]
Bosma B, du Plessis F, Ehlert E, et al. Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system[J]. Gene Ther, 2018, 25(6): 415-424. [百度学术]
Salganik M, Venkatakrishnan B, Bennett A, et al. Evidence for pH-dependent protease activity in the adeno-associated virus capsid[J]. J Virol, 2012, 86(21): 11877-11885. [百度学术]
Grieger JC, Snowdy S, Samulski RJ. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly[J]. J Virol, 2006, 80(11): 5199-5210. [百度学术]
Oyama H, Ishii K, Maruno T, et al. Characterization of adeno-associated virus capsid proteins with two types of VP3-related components by capillary gel electrophoresis and mass spectrometry[J]. Hum Gene Ther, 2021, 32(21/22): 1403-1416. [百度学术]
Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach[J]. Biotechnol Prog, 2012, 28(3): 608-622. [百度学术]
Wörner TP, Bennett A, Habka S, et al. Adeno-associated virus capsid assembly is divergent and stochastic[J]. Nat Commun, 2021, 12(1): 1642. [百度学术]
Giles AR, Sims JJ, Turner KB, et al. Deamidation of amino acids on the surface of adeno-associated virus capsids leads to charge heterogeneity and altered vector function[J]. Mol Ther, 2018, 26(12): 2848-2862. [百度学术]
Mary B, Maurya S, Arumugam S, et al. Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes[J]. FEBS J, 2019, 286(24): 4964-4981. [百度学术]
Zhong L, Li BZ, Jayandharan G, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression[J]. Virology, 2008, 381(2): 194-202. [百度学术]
Weger S, Hammer E, Heilbronn R. SUMO-1 modification regulates the protein stability of the large regulatory protein Rep78 of adeno associated virus type 2 (AAV-2)[J]. Virology, 2004, 330(1): 284-294. [百度学术]
Gabriel N, Hareendran S, Sen D, et al. Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo[J]. Hum Gene Ther Methods, 2013, 24(2): 80-93. [百度学术]
Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors[J]. Curr Opin Virol, 2016, 21: 75-80. [百度学术]
Hu S, Yang LP. Expression pattern of different serotypes of adeno-associated viral vectors in mouse retina[J]. J Peking Univ Heath Sci (北京大学学报 医学版), 2020, 52(5): 845-850. [百度学术]
Yang F, Yang Y, Wang XL, et al. Comparison of the transfection effect of different AAV serotypes in rat DRG neurons[J]. Lab Anim Sci (实验动物科学), 2020, 37(6): 66-69. [百度学术]
Farraha M, Kizana E. Assessing recombinant AAV shedding after cardiac gene therapy[J]. Methods Mol Biol, 2022, 2573: 333-344. [百度学术]
Hakim CH, Kumar SRP, Pérez-López D, et al. Assessment of the gene therapy immune response in the canine muscular dystrophy model[J]. Methods Mol Biol, 2023, 2587: 353-375. [百度学术]
Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors[J]. Hum Gene Ther, 2010, 21(6): 704-712. [百度学术]
Kruzik A, Fetahagic D, Hartlieb B, et al. Prevalence of anti-adeno-associated virus immune responses in international cohorts of healthy donors[J]. Mol Ther Methods Clin Dev, 2019, 14: 126-133. [百度学术]
Heldt CL, Areo O, Joshi PU, et al. Empty and full AAV capsid charge and hydrophobicity differences measured with single-particle AFM[J]. Langmuir, 2023, 39(16): 5641-5648. [百度学术]
Wang CL, Mulagapati SHR, Chen ZY, et al. Developing an anion exchange chromatography assay for determining empty and full capsid contents in AAV6. 2[J]. Mol Ther Methods Clin Dev, 2019, 15: 257-263. [百度学术]
Serrano MAC, Furman R, Chen GD, et al. Mass spectrometry in gene therapy: challenges and opportunities for AAV analysis[J]. Drug Discov Today, 2023, 28(1): 103442. [百度学术]
Mingozzi F, Anguela XM, Pavani G, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys[J]. Sci Transl Med, 2013, 5(194): 194ra92. [百度学术]
Gao K, Li MX, Zhong L, et al. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side-effects[J]. Mol Ther Methods Clin Dev, 2014, 1(9): 20139. [百度学术]
Jin XY, Liu L, Nass S, et al. Direct liquid chromatography/mass spectrometry analysis for complete characterization of recombinant adeno-associated virus capsid proteins[J]. Hum Gene Ther Methods, 2017, 28(5): 255-267. [百度学术]
Rogstad S, Faustino A, Ruth A, et al. A retrospective evaluation of the use of mass spectrometry in FDA biologics license applications[J]. J Am Soc Mass Spectrom, 2017, 28(5): 786-794. [百度学术]
Chen GD, Tao L, Li ZJ. Recent advancements in mass spectrometry for higher order structure characterization of protein therapeutics[J]. Drug Discov Today, 2022, 27(1): 196-206. [百度学术]
Liu XR, Huang RYC, Zhao FF, et al. Advances in mass spectrometry-based epitope mapping of protein therapeutics[J]. J Pharm Biomed Anal, 2022, 215: 114754. [百度学术]
Boeri Erba E, Signor L, Petosa C. Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry[J]. J Proteomics, 2020, 222: 103799. [百度学术]
Lee K, O'Reilly FJ. Cross-linking mass spectrometry for mapping protein complex topologies in situ[J]. Essays Biochem, 2023, 67(2): 215-228. [百度学术]
Pepelnjak M, de Souza N, Picotti P. Detecting protein-small molecule interactions using limited proteolysis-mass spectrometry (LiP-MS)[J]. Trends Biochem Sci, 2020, 45(10): 919-920. [百度学术]
Jurga, V, Kodicek M. Limited and pulse proteolysis of human hemoglobin[J]. Chemicke Listy, 2010, 104(4): 232-235. [百度学术]
Garcia NK, Sreedhara A, Deperalta G, et al. Optimizing hydroxyl radical footprinting analysis of biotherapeutics using internal standard dosimetry[J]. J Am Soc Mass Spectrom, 2020, 31(7): 1563-1571. [百度学术]
Espino JA, Jones LM. In vivo hydroxyl radical protein footprinting for the study of protein interactions in Caenorhabditis elegans[J]. J Vis Exp, 2020(158): 10. 3791/60910. [百度学术]
Tran MH, Schoeder CT, Schey KL, et al. Computational structure prediction for antibody-antigen complexes from hydrogen-deuterium exchange mass spectrometry: challenges and outlook[J]. Front Immunol, 2022, 13: 859964. [百度学术]
Piotrowski C, Sinz A. Structural investigation of proteins and protein complexes by chemical cross-linking/mass spectrometry[M]//Advances in Experimental Medicine and Biology. Singapore: Springer Singapore, 2018: 101-121. [百度学术]
Kurt LU, Clasen MA, Santos MDM, et al. Characterizing protein conformers by cross-linking mass spectrometry and pattern recognition[J]. Bioinformatics, 2021, 37(18): 3035-3037. [百度学术]
Prabhu N, Dai LY, Nordlund P. CETSA in integrated proteomics studies of cellular processes[J]. Curr Opin Chem Biol, 2020, 54: 54-62. [百度学术]
Su Q, Sena-Esteves M, Gao GP. Analysis of recombinant adeno-associated virus (rAAV) purity using silver-stained SDS-PAGE[J]. Cold Spring Harb Protoc, 2020, 2020(8): 095679. [百度学术]
Penaud-Budloo M, Broucque F, Harrouet K, et al. Stability of the adeno-associated virus 8 reference standard material[J]. Gene Ther, 2019, 26(5): 211-215. [百度学术]
Gurda BL, DiMattia MA, Miller EB, et al. Capsid antibodies to different adeno-associated virus serotypes bind common regions[J]. J Virol, 2013, 87(16): 9111-9124. [百度学术]
Savelyev A, Gorbet GE, Henrickson A, et al. Moving analytical ultracentrifugation software to a good manufacturing practices (GMP) environment[J]. PLoS Comput Biol, 2020, 16(6): e1007942. [百度学术]
Lechner A, Giorgetti J, Gahoual R, et al. Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016-2018[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1122/1123: 1-17. [百度学术]
Zhang CX, Meagher MM. Highly sensitive SDS capillary gel electrophoresis with sample stacking requiring only nanograms of adeno-associated virus capsid proteins[J]. Methods Mol Biol, 2019, 1972: 263-270. [百度学术]
Zhang XM, Jin XY, Liu L, et al. Optimized reversed-phase liquid chromatography/mass spectrometry methods for intact protein analysis and peptide mapping of adeno-associated virus proteins[J]. Hum Gene Ther, 2021, 32(23/24): 1501-1511. [百度学术]
Zhu QF, Zhang TY, Qin LL, et al. Method to calculate the retention index in hydrophilic interaction liquid chromatography using normal fatty acid derivatives as calibrants[J]. Anal Chem, 2019, 91(9): 6057-6063. [百度学术]
Wang F. Study on the retention mechanism in hydrophilic interaction chromatography using stoichiometric displacement theory(应用计量置换理论对亲水相互作用色谱中溶质保留机理的研究)[D]. Xi'an: Northwest University, 2015. [百度学术]
D'Atri V, Nováková L, Fekete S, et al. Orthogonal middle-up approaches for characterization of the glycan heterogeneity of etanercept by hydrophilic interaction chromatography coupled to high-resolution mass spectrometry[J]. Anal Chem, 2019, 91(1): 873-880. [百度学术]
Gargano AFG, Schouten O, van Schaick G, et al. Profiling of a high mannose-type N-glycosylated lipase using hydrophilic interaction chromatography-mass spectrometry[J]. Anal Chim Acta, 2020, 1109: 69-77. [百度学术]
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: a review based on the separation characteristics of the hydrophilic interaction chromatography phases[J]. J Sep Sci, 2019, 42(1): 130-213. [百度学术]
Liu AP, Patel SK, Xing T, et al. Characterization of adeno-associated virus capsid proteins using hydrophilic interaction chromatography coupled with mass spectrometry[J]. J Pharm Biomed Anal, 2020, 189: 113481. [百度学术]
Allison TM, Bechara C. Structural mass spectrometry comes of age: new insight into protein structure, function and interactions[J]. Biochem Soc Trans, 2019, 47(1): 317-327. [百度学术]
Boeri Erba E, Signor L, Oliva MF, et al. Characterizing intact macromolecular complexes using native mass spectrometry[M]//Protein Complex Assembly. New York, NY: Springer New York, 2018: 133-151. [百度学术]
Lössl P, Brunner AM, Liu F, et al. Deciphering the interplay among multisite phosphorylation, interaction dynamics, and conformational transitions in a tripartite protein system[J]. ACS Cent Sci, 2016, 2(7): 445-455. [百度学术]
Snijder J, van de Waterbeemd M, Damoc E, et al. Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry[J]. J Am Chem Soc, 2014, 136(20): 7295-7299. [百度学术]
Zhang Y, Wang Y, Sosic Z, et al. Identification of adeno-associated virus capsid proteins using ZipChip CE/MS[J]. Anal Biochem, 2018, 555: 22-25. [百度学术]
Zhou Y, Wang YJ. Direct deamidation analysis of intact adeno-associated virus serotype 9 capsid proteins using reversed-phase liquid chromatography[J]. Anal Biochem, 2023, 668: 115099. [百度学术]
Bennett A, Patel S, Mietzsch M, et al. Thermal stability as a determinant of AAV serotype identity[J]. Mol Ther Methods Clin Dev, 2017, 6: 171-182. [百度学术]
Zarei M, Wang P, Jonveaux J, et al. A novel protocol for in-depth analysis of recombinant adeno-associated virus capsid proteins using UHPLC-MS/MS[J]. Rapid Commun Mass Spectrom, 2022, 36(6): e9247. [百度学术]
Murray S, Nilsson CL, Hare JT, et al. Characterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry[J]. J Virol, 2006, 80(12): 6171-6176. [百度学术]
Lam AK, Zhang JP, Frabutt D, et al. Fast and high-throughput LC-MS characterization, and peptide mapping of engineered AAV capsids using LC-MS/MS[J]. Mol Ther Methods Clin Dev, 2022, 27: 185-194. [百度学术]
Wu ZJ, Wang HX, Tustian A, et al. Development of a two-dimensional liquid chromatography-mass spectrometry platform for simultaneous multi-attribute characterization of adeno-associated viruses[J]. Anal Chem, 2022, 94(7): 3219-3226. [百度学术]
Antoine R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: what can we learn from charge detection mass spectrometry[J]? Rapid Commun Mass Spectrom, 2020, 34(Suppl 2): e8539. [百度学术]
Barnes LF, Draper BE, Kurian J, et al. Analysis of AAV-extracted DNA by charge detection mass spectrometry reveals genome truncations[J]. Anal Chem, 2023, 95(9): 4310-4316. [百度学术]
Lee EJ, Guenther CM, Suh J. Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering[J]. Curr Opin Biomed Eng, 2018, 7: 58-63. [百度学术]