• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

靶向肿瘤纳米晶体的研究进展

唐克琴, 林华庆, 李舒虹, 董理心, 鲁泊宏, 蒋鸿

唐克琴, 林华庆, 李舒虹, 董理心, 鲁泊宏, 蒋鸿. 靶向肿瘤纳米晶体的研究进展[J]. 中国药科大学学报, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405
引用本文: 唐克琴, 林华庆, 李舒虹, 董理心, 鲁泊宏, 蒋鸿. 靶向肿瘤纳米晶体的研究进展[J]. 中国药科大学学报, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405
TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405
Citation: TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405

靶向肿瘤纳米晶体的研究进展

基金项目: 广东省科学技术厅-广东省中医药科学院联合科研项目资助(No.2016A020226038);广东省省级科技计划项目资助(No.2013B090800007)

Advances in tumor targeted nanocrystals

Funds: This study was supported by the Joint Research Project of Science and Technology Department of Guangdong Province and Guangdong Academy of Chinese Medicine (No.2016A020226038); and the Scientific and Technological Planning Project of Guangdong Province(No.2013B090800007)
  • 摘要: 纳米晶体是以少量表面活性剂或高分子聚合物为稳定剂,将难溶性药物粒子分散于水或油中形成的纳米级(1~ 1 000 nm)分散体系。纳米晶体含药量高,制备工艺简单成熟。目前,已上市的24个纳米晶体制剂主要集中在改善难溶性药物溶解性以及提高生物利用度上。近几年来,关于纳米晶体通过控制粒径或表面修饰实现靶向给药的研究逐渐成为热点。本文主要介绍了用于延长纳米晶体体内循环时间、增加对肿瘤细胞的亲和力、实现对内外刺激的响应的3种靶向策略,并探讨了纳米晶体技术应用于靶向抗肿瘤药物存在的瓶颈,为纳米晶体制剂的开发提供参考。
    Abstract: Nanocrystals are nanoscale (1-1 000 nm) dispersion systems in which small numbers of surfactants or polymers are used as stabilizers to disperse insoluble drug particles in water or oil. Nanocrystals enjoy not only high drug content, but also a simple and mature preparation process. At present, 24 nanocrystals products that have been marketed mainly focus on enhancing the solubility and bioavailability of poorly soluble drugs. And recent years have witnessed an increasing number of research reports on target drug delivery of nanocrystals through particle size control and surface modification. This paper mainly introduces three targeting strategies for prolonging the in vivo circulation time of nanocrystals, increasing the affinity for tumor cells and achieving the response to internal and external stimuli, and discusses the current challenges in the application of nanocrystal technology to targeted anti-tumor drugs.
  • [1] Fan M,Geng S,Liu Y, et al. Nanocrystal technology as a strategy to improve drug bioavailability and antitumor efficacy for the cancer treatment[J].Curr Pharm Des, 2018, 24(21):2416-2424.
    [2] Huang ZG,Lv FM,Wang J, et al. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability[J].Int J Pharm,2019,556:217-225.
    [3] Gao L,Liu G,Ma J, et al. Drug nanocrystals: in vivo performances[J]. J Control Release, 2012, 160(3):418-430.
    [4] Kalyane D,Raval N,Maheshwari R,et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer[J].Mater Sci Eng C, 2019,98:1252-1276.
    [5] Zheng HL,Song YZ,Deng YH.A review for phagocyte system: the executors of nanoparticles clearance[J].J Shenyang Pharm Univ(沈阳药科大学学报),2019,36(1):91-102.
    [6] Wilhelm S,Tavares A,Dai Q,et al. Analysis of nanoparticle delivery to tumours[J].Nat Rev Mater, 2016, 1(5):1-12.
    [7] Ma YQ,Zhang ZZ,Li G,et al.The research progress on nanocrystal technology and its targeted delivery[J].Chin J Hosp Pharm(中国医院药学杂志),2018,38(9):1014-1017.
    [8] Mishra P,Nayak B,Dey RK.PEGylation in anti-cancer therapy: an overview[J]. Asian J Pharm Sci, 2016, 11(3):337-348.
    [9] Sharma S, Singh J, Verma A, et al. Hyaluronic acid anchored paclitaxel nanocrystals improves chemotherapeutic efficacy and inhibits lung metastasis in tumor-bearing rat model[J]. RSC Advances, 2016, 6(77):73083-73095.
    [10] Yin TJ,Cai H,Liu JY,et al. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel[J]. Eur J Pharm Sci, 2015, 83:79-87.
    [11] Zhao J,Liu YY,Wang LL,et al.Functional and modified nanocrystals technology for target drug delivery[J].J Nanosci Nanotechnol,2018,18(8):5207-5221.
    [12] Zhang WP,Chen YW,Zhang K,et al.Research of folic acid mediated targeted drug delivery system[J].Chin Arch Tradit Chin Med(中华中医药学刊),2017,35(7):1855-1859.
    [13] Hong JY,Sun ZH,Li YJ,et al. Folate modified annonaceous acetogenins (ACGs) nanosuspensions and improved anti-tumor efficacy[J].Int J Nanomedicine,2017,12:5053-5067.
    [14] Sun XF,Liu T,Ling Y,et al.Advances in research of hyaluronic acid modified nanomicelles for targeting tumor therapy and drug release behavior[J].J China Pharm Univ(中国药科大学学报),2019,50(6):641-647.
    [15] Wan L, Jiao J, Cui Y, et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells[J]. Nanotechnology, 2016, 27(13):102-115.
    [16] Agrawal S,Dwivedi M,Ahmad H, et al. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer[J].Nanomedicine, 2018, 14(2):327-337.
    [17] Gomme PT,Mccann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions[J]. Drug Discov Today, 2005, 10(4):267-273.
    [18] Peng J,Zhang YT,Chen J,et al. Structural function and potential clinical value of transferrin[J].Chin J Mod Med(中国现代医学杂志),2017,27(26):56-60.
    [19] Choi JS,Park JS. Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting[J]. Drug Des Devel Ther, 2016,11:17-26.
    [20] Sohn JS,Yoon DS,Sohn JY,et al. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals[J]. Mater Sci Eng C, 2017, 72:228-237.
    [21] Song ZW,Lin Y,Zhang X, et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects[J].Int J Nanomed, 2017, 12:1941-1958.
    [22] Sun Y.Advances in research on monoclonal antibodies against tumors[J]. Int J Biologicals(国际生物制品学杂志), 2016, 39(3):128-133.
    [23] Liang NS. New advances in the research and application of monoclonal antibodies against cancer[J].J China Pharm(中国药房), 2010,21(14):19-22.
    [24] Noh JK,Naeem M,Cao J,et al. Herceptin-functionalized pure paclitaxel nanocrystals for enhanced delivery to HER2-postive breast cancer cells[J]. Int J Pharm, 2016, 513(1/2):543-553.
    [25] Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine[J]. J Control Release, 2016,244:108-121.
    [26] Mura S,Nicolas J,Couvreur P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013, 12(11):991-1003.
    [27] Fuhrmann K,Po?omska A,Aeberli C,et al. Modular design of redox-responsive stabilizers for nanocrystals[J]. ACS Nano, 2013, 7(9):8243-8250.
    [28] Li TJ,Huang CC,Ruan PW,et al. In vivo anti-cancer efficacy of magnetite nanocrystal - based system using locoregional hyperthermia combined with 5-fluorouracil chemotherapy[J]. Biomaterials, 2013, 34(32):7873-7883.
    [29] Gao L,Liu GY,Ma JL,et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs[J]. Pharm Res, 2013,30(2):307-324.
    [30] Tuomela A,Saarinen J,Clare J,et al.Production, applications and in vivo fate of drug nanocrystals[J].J Drug Deliv Sci Tec,2016,34:21-31.
    [31] Mohammad IS,Hu H, Yin L,et al. Drug nanocrystals: fabrication methods and promising therapeutic applications[J].Int J Pharm, 2019,562:187-202.
    [32] Chen ML,John M,Lee SL,et al. Development considerations for nanocrystal drug products[J].AAPS J,2017,19(3):642-651.
    [33] Pawar VK, Singh Y, Mehe JG,et al. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery[J]. J Control Release,2014,183:51-66.
    [34] Thanuja MY,Anupama C,Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far[J]. Adv Drug Deliv Rev, 2018,132:57-80.
  • 期刊类型引用(8)

    1. 刘健弘,张欣橦,李颖娴,杨展,符艺,周瑜芳. 药物缓释体系的研究进展. 广东化工. 2024(15): 90-92+45 . 百度学术
    2. 郑丽君,刘玲,张向荣. 脂质体在乳品中的应用. 中国药剂学杂志(网络版). 2023(01): 34-48 . 百度学术
    3. 郭文娣,彭玉帅,许卉,陈华. 脂质体制剂制备工艺及质量控制研究进展. 药物分析杂志. 2023(01): 61-69 . 百度学术
    4. 柳宇红,姜宇,郝贵周,刘善奎. 挤出法制备卡巴他赛脂质体的工艺优化. 药学研究. 2023(04): 243-246+284 . 百度学术
    5. 吴灿,关延彬,贾永艳. 药剂学课程思政探索——以“脂质体”为例. 中国教育技术装备. 2023(18): 72-74 . 百度学术
    6. 毛欣亮,邓惠林,张浩,李吉平,蔡德富,樊丽,孙珈,岳丽玲,潘思文,温宪春. 共载紫草素和盐酸阿霉素pH敏感脂质体的制备及理化性质评价. 齐齐哈尔医学院学报. 2023(23): 2201-2207 . 百度学术
    7. 蔡成龙,闫雪生,于蓓蓓,孙丹丹. 透明质酸修饰茯苓皮总三萜脂质体制备与表征研究. 辽宁中医药大学学报. 2022(05): 50-55 . 百度学术
    8. 张艺,杭太俊,宋敏. 载药脂质体包封率测定方法的研究进展. 中国药科大学学报. 2021(02): 245-252 . 本站查看

    其他类型引用(12)

计量
  • 文章访问数:  263
  • HTML全文浏览量:  1
  • PDF下载量:  542
  • 被引次数: 20
出版历程
  • 收稿日期:  2019-12-15
  • 刊出日期:  2020-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭