• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

载铜绿假单胞菌DNA疫苗温敏水凝胶系统的构建及体内评价

石敏, 雍琴, 何颖娜, 黄仕琴, 赵轩, 余娴

石敏, 雍琴, 何颖娜, 黄仕琴, 赵轩, 余娴. 载铜绿假单胞菌DNA疫苗温敏水凝胶系统的构建及体内评价[J]. 中国药科大学学报, 2021, 52(2): 186-194. DOI: 10.11665/j.issn.1000-5048.20210207
引用本文: 石敏, 雍琴, 何颖娜, 黄仕琴, 赵轩, 余娴. 载铜绿假单胞菌DNA疫苗温敏水凝胶系统的构建及体内评价[J]. 中国药科大学学报, 2021, 52(2): 186-194. DOI: 10.11665/j.issn.1000-5048.20210207
SHI Min, YONG Qin, HE Yingna, HUANG Shiqin, ZHAO Xuan, YU Xian. Construction and in vivo evaluation of a thermosensitive hydrogel system loading with Pseudomonas aeruginosa DNA vaccine[J]. Journal of China Pharmaceutical University, 2021, 52(2): 186-194. DOI: 10.11665/j.issn.1000-5048.20210207
Citation: SHI Min, YONG Qin, HE Yingna, HUANG Shiqin, ZHAO Xuan, YU Xian. Construction and in vivo evaluation of a thermosensitive hydrogel system loading with Pseudomonas aeruginosa DNA vaccine[J]. Journal of China Pharmaceutical University, 2021, 52(2): 186-194. DOI: 10.11665/j.issn.1000-5048.20210207

载铜绿假单胞菌DNA疫苗温敏水凝胶系统的构建及体内评价

基金项目: 国家自然科学基金资助项目(No.82072327);重庆市卫生计生委重点项目资助(No.2016ZDXM010)

Construction and in vivo evaluation of a thermosensitive hydrogel system loading with Pseudomonas aeruginosa DNA vaccine

Funds: This study was supported by the National Natural Science Foundation of China (No. 82072327) and the Health Commission of Chongqing (No. 2016ZDXM010)
  • 摘要: 构建载铜绿假单胞菌(Pseudomonas aeruginosa,PA) DNA疫苗的PLGA-PEG-PLGA温敏水凝胶系统,评价该系统的体内免疫效力。通过简单物理混合法制备PA DNA疫苗的PLGA-PEG-PLGA温敏水凝胶,测量其胶凝温度;评价其体外毒性、体外累计释放率;通过凝胶体积变化评价水凝胶的体内降解;将小鼠分为对照组(PBS)、水凝胶组(Hydrogel)、in vivo-jetPEI/质粒DNA组(in vivo-jetPEI/pDNA)、水凝胶+in vivo-jetPEI/质粒DNA组(Gel+in vivo-jetPEI/pDNA),免疫3次,每次间隔10 d,末次免疫2周后处死小鼠,检测血清特异性IgG抗体、脾淋巴细胞增殖情况及细胞上清液中IFN-γ水平。结果显示,PLGA-PEG-PLGA水凝胶具有温敏性,相变温度为(32 ± 0.5) ℃;体外对DC 2.4细胞无明显毒性;体外释放7 d时约释放80%的质粒DNA;PLGA-PEG-PLGA在体内具有可降解性,大约15 d几乎完全降解;体内免疫实验表明in vivo-jetPEI/pDNA及Gel+in vivo-jetPEI/pDNA组小鼠脾淋巴细胞明显增殖、特异性IgG抗体及IFN-γ水平升高,且水凝胶可增强DNA疫苗诱导的免疫反应水平。结果表明,载PA DNA疫苗的温敏水凝胶系统是研发PA疫苗有前景的一种新策略。
    Abstract: A thermosensitive hydrogel system consisting of PLGA-PEG-PLGA hydrogel and Pseudomonas aeruginosa DNA vaccine was constructed and the immune efficacy of the system was evaluated. The PLGA-PEG-PLGA thermosensitive hydrogel containing Pseudomonas aeruginosa DNA vaccine was prepared by a simple physical mixing method. The gelation temperature, cytotoxicity, and release curve in vitro were tested.The degradability of hydrogel in vivo was evaluated. The mice were divided into control group (PBS), hydrogel group (Hydrogel), in vivo-jetPEI/plasmid DNA group (in vivo-jetPEI/pDNA), and hydrogel + in vivo-jetPEI/plasmid group (Gel+in vivo-jetPEI/pDNA). Mice were immunized three times with a ten-day interval. Two weeks after the last immunization, the mice were sacrificed. The proliferation of splenic lymphocytes, serum specific IgG antibodies and IFN-γ in supernatant of splenic lymphocytes were detected. The gelation temperature of PLGA-PEG-PLGA hydrogel was (32 ± 0.5) ℃. There was no obvious toxicity to cells in vitro, and about 80% of plasmid DNA was released after 7 days in vitro. PLGA-PEG-PLGA hydrogel was biodegradable, and degraded almost completely after 15 days in vivo. The spleen lymphocytes proliferated; the levels of specific IgG antibodies and IFN-γ of in vivo-jetPEI/pDNA and Gel+in vivo-jetPEI/pDNA groups increased. The hydrogel could enhance the immune response induced by DNA vaccine.Results suggest that the thermosensitive hydrogel system consisting of PLGA-PEG-PLGA hydrogel and Pseudomonas aeruginosa DNA vaccine is a promising new strategy for the development of PA vaccine.
  • [1] . Clin Microbiol Rev, 2019, 32(4): e00031-00019.
    [2] Merakou C, Schaefers MM, Priebe GP. Progress toward the elusive Pseudomonas aeruginosa vaccine [J]. Surg Infect (Larchmt), 2018, 19(8): 757-768.
    [3] Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies [J]. Biotechnol Adv, 2019, 37(1): 177-192.
    [4] Hoggarth A, Weaver A, Pu Q, et al. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa [J]. Drug Des Devel Ther, 2019, 13: 909-924.
    [5] Kazemi Moghaddam E, Owlia P, Jahangiri A, et al. Conserved OprF as a selective immunogen against Pseudomonas aeruginosa [J]. Iran J Pathol, 2017, 12(2): 165-170.
    [6] Fito-Boncompte L, Chapalain A, Bouffartigues E, et al. Full virulence of Pseudomonas aeruginosa requires OprF [J]. Infect Immun, 2011, 79(3): 1176-1186.
    [7] Bahey-El-Din M, Mohamed SA, Sheweita SA, et al. Recombinant N-terminal outer membrane porin (OprF) of Pseudomonas aeruginosa is a promising vaccine candidate against both P. aeruginosa and some strains of Acinetobacter baumannii [J]. Int J Med Microbiol, 2020, 310 (3): 151415.
    [8] Yu X, Wang Y, Xia Y, et al. A DNA vaccine encoding VP22 of herpes simplex virus type I (HSV-1) and OprF confers enhanced protection from Pseudomonas aeruginosa in mice [J]. Vaccine, 2016, 34(37): 4399-4405.
    [9] Chapman R, Rybicki EP. Use of a novel enhanced DNA vaccine vector for preclinical virus vaccine investigation [J]. Vaccines (Basel), 2019, 7 (2): 50.
    [10] Hobernik D, Bros M. DNA vaccines-how far from clinical use ? [J]. Int J Mol Sci, 2018, 19(11): 3605.
    [11] HUANG SQ, SHI M, HE YN, et al. Construction and in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system [J]. J China Pharm Univ (中国药科大学学报), 2019, 50 (6): 743-752.
    [12] Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy [J]. Drug Discov Today, 2016, 21 (11): 1835-1849.
    [13] Mathew AP, Uthaman S, Cho KH, et al. Injectable hydrogels for delivering biotherapeutic molecules [J]. Int J Biol Macromol, 2018, 110: 17-29.
    [14] Gao Y, Ji H, Peng L, et al. Development of PLGA-PEG-PLGA hydrogel delivery system for enhanced immunoreaction and efficacy of Newcastle disease virus DNA vaccine [J]. Molecules, 2020, 25(11): 2505.
    [15] Chen Y, Shi J, Zhang Y, et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction [J]. J Mater Chem B, 2020, 8 (5): 980-992.
    [16] Liu D, Wu Q, Zhu Y, et al. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization [J]. Drug Deliv, 2019, 26 (1): 522-531.
    [17] Jeong JH, Kim SW, Park TG. Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency [J]. Pharm Res, 2004, 21(1):50-54.
    [18] Norouzi F, Behrouz B, Ranjbar M, et al. Immunotherapy with IgY antibodies toward outer membrane protein F protects burned mice against Pseudomonas aeruginosa infection [J]. J Immunol Res, 2020: 7840631.
    [19] Adlbrecht C, Wurm R, Depuydt P, et al. Efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in mechanically ventilated intensive care patients-a randomized clinical trial [J]. Crit Care, 2020, 24 (1): 74.
    [20] Shen W, Chen X, Luan J, et al. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment [J]. ACS Appl Mater Interfaces, 2017, 9 (46): 40031-40046.
    [21] Wang P, Chu W, Zhuo X, et al. Modified PLGA-PEG-PLGA thermosensitive hydrogels with suitable thermosensitivity and properties for use in a drug delivery system [J]. J Mater Chem B, 2017, 5 (8): 1551-1565.
    [22] Cao D, Zhang X, Akabar MD, et al. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer [J]. Artif Cells Nanomed Biotechnol, 2019, 47 (1): 181-191.
    [23] Chan PS, Li Q, Zhang B, et al. In vivo biocompatibility and efficacy of dexamethasone-loaded PLGA-PEG-PLGA thermogel in an alkali-burn induced corneal neovascularization disease model [J]. Eur J Pharm Biopharm, 2020, 155: 190-198.
    [24] Wang X, Zhang Y, Xue W, et al. Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization [J]. J Biomater Appl, 2017, 31 (6): 923-932.
    [25] Moffatt S, Cristiano RJ. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells [J]. Int J Pharm, 2006, 321(1-2):143-154.
    [26] Gong YB, Ma HC, Liu JG. Controlled WISP-1 shRNA delivery using thermosensitive biodegradable hydrogel in the treatment of osteoarthritis [J]. J Bionic Eng, 2015, 12 (2): 285-293.
计量
  • 文章访问数:  192
  • HTML全文浏览量:  5
  • PDF下载量:  793
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-03-08
  • 刊出日期:  2021-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭