• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

鲍曼不动杆菌UDP-葡萄糖4-差向异构酶Gne1的表征

张展, 冯雁, 李谦, 崔莉

张展, 冯雁, 李谦, 崔莉. 鲍曼不动杆菌UDP-葡萄糖4-差向异构酶Gne1的表征[J]. 中国药科大学学报, 2021, 52(6): 742-750. DOI: 10.11665/j.issn.1000-5048.20210613
引用本文: 张展, 冯雁, 李谦, 崔莉. 鲍曼不动杆菌UDP-葡萄糖4-差向异构酶Gne1的表征[J]. 中国药科大学学报, 2021, 52(6): 742-750. DOI: 10.11665/j.issn.1000-5048.20210613
ZHANG Zhan, FENG Yan, LI Qian, CUI Li. Characterization of a UDP-glucose 4-epimerase from Acinetobacter Baumannii[J]. Journal of China Pharmaceutical University, 2021, 52(6): 742-750. DOI: 10.11665/j.issn.1000-5048.20210613
Citation: ZHANG Zhan, FENG Yan, LI Qian, CUI Li. Characterization of a UDP-glucose 4-epimerase from Acinetobacter Baumannii[J]. Journal of China Pharmaceutical University, 2021, 52(6): 742-750. DOI: 10.11665/j.issn.1000-5048.20210613

鲍曼不动杆菌UDP-葡萄糖4-差向异构酶Gne1的表征

基金项目: 国家自然科学基金资助项目(No.21977067, No.31770098, No.31620103901); 国家重点研发计划项目资助(2018YFA0900702)

Characterization of a UDP-glucose 4-epimerase from Acinetobacter Baumannii

Funds: This study was supported by the National Natural Science Foundation of China (No.21977067, No.31770098, No.31620103901) and the National Key R&D Program of China (No.2018YFA0900702)
  • 摘要: 异源表达鲍曼不动杆菌AB0057的UDP-葡萄糖4-差向异构酶并表征其酶学性质以及分析其结构与功能。将异构酶基因构建到pET-28a表达载体并在大肠埃希菌BL21(DE3)中异源表达,使用高效液相色谱检测酶活力及表征酶学性质。系统发育分析、序列比对、同源建模与分子对接分析其结构与关键催化位点。结果显示,重组酶Gne1获得可溶性表达,质量约为38.9 kD,催化最适温度为44 ℃,最适pH为6.0,米氏常数KM与催化常数kcat分别为(1.227 ± 0.082 4) mmol/L和(82.64 ± 3.562) × 10-3 ?min-1。该酶属于NADB_Rossmann超家族并分属于UDP_G4E_1_SDR_e亚组,分别具有典型GXGXXG基序与YXXXK基序。N端结构域与NAD结合,而C端结构域用来结合底物,催化关键位点为S125和Y150。本研究验证了Gne1的差向异构酶活性,阐释了其序列特点和结构特征,揭示了其与底物、辅因子的结合模式,分析了关键催化位点。为蛋白质工程改造提高酶活力进而利用生物酶法合成稀有功能糖提供了理论依据。
    Abstract: The purpose of this article is to express the UDP-glucose 4-epimerase from Acinetobacter baumannii AB0057, characterize its enzymatic properties and analyze its structure and function.The epimerase gene was constructed into pET-28a expression vector and heterologously expressed in BL21(DE3).Enzyme activity was assayed using high performance liquid chromatography.The structure and key residues were analyzed by phylogenetic analysis, sequence alignment, homology modeling and molecular docking.Results indicated that the recombinant enzyme Gne1 was expressed at a molecular weight of 38.9 kD, with an optimum temperature of 44 °C and an optimum pH of 6.0 .Michaelis-Menten parameters KM and kcat were (1.227 ± 0.082 4) mmol/L and (82.64 ± 3.562) × 10-3?min-1, respectively.This enzyme belongs to NADB_Rossmann superfamily and UDP_G4E_1_SDR_e subgroup with typical GXGXXG and YXXXK sequence motifs.The N-terminal structural domain bound to NAD, while the C-terminal structural domain bound to substrate, and the catalytic key sites were S125 and Y150.The current work verified the epimerase activity of Gne1, explained its sequence and structural features, revealed its binding mode with substrates and cofactors, and analyzed the key residues, which provides a basis for protein engineering to improve the epimerase activity and then use biological enzymatic method to synthesize rare functional sugars.
  • [1] . J Biosci Bioeng,2004,97(2):89-94.
    [2] Mu WM,Zhang WL,Feng YH,et al. Recent advances on applications and biotechnological production of D-psicose[J]. Appl Microbiol Biotechnol,2012,94(6):1461-1467.
    [3] Kim P. Current studies on biological tagatose production using L-arabinose isomerase:a review and future perspective[J]. Appl Microbiol Biotechnol,2004,65(3):243-249.
    [4] Oh DK. Tagatose:properties,applications,and biotechnological processes[J]. Appl Microbiol Biotechnol,2007,76(1):1-8.
    [5] Jenkinson SF,Fleet GW,Nash RJ,et al. Looking-glass synergistic pharmacological chaperones:DGJ and L-DGJ from the enantiomers of tagatose[J]. Org Lett,2011,13(15):4064-4067.
    [6] Izumori K. Izumoring:a strategy for bioproduction of all hexoses[J]. J Biotechnol,2006,124(4):717-722.
    [7] Zhu HM,Sun B,Li YJ,et al. KfoA,the UDP-glucose-4-epimerase of Escherichia coli strain O5:K4:H4,shows preference for acetylated substrates[J]. Appl Microbiol Biotechnol,2018,102(2):751-761.
    [8] Ishiyama N,Creuzenet C,Lam JS,et al. Crystal structure of WbpP,a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa:substrate specificity in udp-hexose 4-epimerases[J]. J Biol Chem,2004,279(21):22635-22642.
    [9] Frey PA. The Leloir pathway:a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose[J]. FASEB J,1996,10(4):461-470.
    [10] Holden HM,Rayment I,Thoden JB. Structure and function of enzymes of the Leloir pathway for galactose metabolism[J]. J Biol Chem,2003,278(45):43885-43888.
    [11] Ostash B,Doud EH,Lin C,et al. Complete characterization of the seventeen step moenomycin biosynthetic pathway[J]. Biochemistry,2009,48(37):8830-8841.
    [12] Song HB,He M,Cai ZP,et al. UDP-glucose 4-epimerase and β-1,4-galactosyltransferase from the oyster Magallana gigas as valuable biocatalysts for the production of galactosylated products[J]. Int J Mol Sci,2018,19(6):1600-1610.
    [13] Kim HJ,Kang SY,Park JJ,et al. Novel activity of UDP-galactose-4-epimerase for free monosaccharide and activity improvement by active site-saturation mutagenesis[J]. Appl Biochem Biotechnol,2011,163(3):444-451.
    [14] Wilson DB,Hogness DS. The enzymes of the galactose operon in Escherichia coli. I. purification and characterization of uridine diphosphogalactose 4-epimerase[J]. J Biol Chem,1964,239:2469-2481.
    [15] Swanson BA,Frey PA. Identification of lysine 153 as a functionally important residue in UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1993,32(48):13231-13236.
    [16] Liu Y,Thoden JB,Kim J,et al. Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1997,36(35):10675-10684.
    [17] Liu Y,Vanhooke JL,Frey PA. UDP-galactose 4-epimerase:NAD+ content and a charge-transfer band associated with the substrate-induced conformational transition[J]. Biochemistry,1996,35(23):7615-7620.
    [18] Frey PA,Hegeman AD. Chemical and stereochemical actions of UDP-galactose 4-epimerase[J]. Acc Chem Res,2013,46(7):1417-1426.
    [19] Thoden JB,Hegeman AD,Wesenberg G,et al. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1997,36(21):6294-6304.
    [20] Thoden JB,Holden HM. Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1998,37(33):11469-11477.
    [21] Thoden JB,Frey PA,Holden HM. Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli:implications for the catalytic mechanism[J]. Biochemistry,1996,35(16):5137-5144.
计量
  • 文章访问数:  115
  • HTML全文浏览量:  7
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-11-03
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭