[1] |
. J Biosci Bioeng,2004,97(2):89-94.
|
[2] |
Mu WM,Zhang WL,Feng YH,et al. Recent advances on applications and biotechnological production of D-psicose[J]. Appl Microbiol Biotechnol,2012,94(6):1461-1467.
|
[3] |
Kim P. Current studies on biological tagatose production using L-arabinose isomerase:a review and future perspective[J]. Appl Microbiol Biotechnol,2004,65(3):243-249.
|
[4] |
Oh DK. Tagatose:properties,applications,and biotechnological processes[J]. Appl Microbiol Biotechnol,2007,76(1):1-8.
|
[5] |
Jenkinson SF,Fleet GW,Nash RJ,et al. Looking-glass synergistic pharmacological chaperones:DGJ and L-DGJ from the enantiomers of tagatose[J]. Org Lett,2011,13(15):4064-4067.
|
[6] |
Izumori K. Izumoring:a strategy for bioproduction of all hexoses[J]. J Biotechnol,2006,124(4):717-722.
|
[7] |
Zhu HM,Sun B,Li YJ,et al. KfoA,the UDP-glucose-4-epimerase of Escherichia coli strain O5:K4:H4,shows preference for acetylated substrates[J]. Appl Microbiol Biotechnol,2018,102(2):751-761.
|
[8] |
Ishiyama N,Creuzenet C,Lam JS,et al. Crystal structure of WbpP,a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa:substrate specificity in udp-hexose 4-epimerases[J]. J Biol Chem,2004,279(21):22635-22642.
|
[9] |
Frey PA. The Leloir pathway:a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose[J]. FASEB J,1996,10(4):461-470.
|
[10] |
Holden HM,Rayment I,Thoden JB. Structure and function of enzymes of the Leloir pathway for galactose metabolism[J]. J Biol Chem,2003,278(45):43885-43888.
|
[11] |
Ostash B,Doud EH,Lin C,et al. Complete characterization of the seventeen step moenomycin biosynthetic pathway[J]. Biochemistry,2009,48(37):8830-8841.
|
[12] |
Song HB,He M,Cai ZP,et al. UDP-glucose 4-epimerase and β-1,4-galactosyltransferase from the oyster Magallana gigas as valuable biocatalysts for the production of galactosylated products[J]. Int J Mol Sci,2018,19(6):1600-1610.
|
[13] |
Kim HJ,Kang SY,Park JJ,et al. Novel activity of UDP-galactose-4-epimerase for free monosaccharide and activity improvement by active site-saturation mutagenesis[J]. Appl Biochem Biotechnol,2011,163(3):444-451.
|
[14] |
Wilson DB,Hogness DS. The enzymes of the galactose operon in Escherichia coli. I. purification and characterization of uridine diphosphogalactose 4-epimerase[J]. J Biol Chem,1964,239:2469-2481.
|
[15] |
Swanson BA,Frey PA. Identification of lysine 153 as a functionally important residue in UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1993,32(48):13231-13236.
|
[16] |
Liu Y,Thoden JB,Kim J,et al. Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1997,36(35):10675-10684.
|
[17] |
Liu Y,Vanhooke JL,Frey PA. UDP-galactose 4-epimerase:NAD+ content and a charge-transfer band associated with the substrate-induced conformational transition[J]. Biochemistry,1996,35(23):7615-7620.
|
[18] |
Frey PA,Hegeman AD. Chemical and stereochemical actions of UDP-galactose 4-epimerase[J]. Acc Chem Res,2013,46(7):1417-1426.
|
[19] |
Thoden JB,Hegeman AD,Wesenberg G,et al. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1997,36(21):6294-6304.
|
[20] |
Thoden JB,Holden HM. Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1998,37(33):11469-11477.
|
[21] |
Thoden JB,Frey PA,Holden HM. Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli:implications for the catalytic mechanism[J]. Biochemistry,1996,35(16):5137-5144.
|