• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

新一代基因编辑工具研究进展

王瑞, 周欣洁, 杜熙钦, 郝翟, 王琛, 邹秉杰, 宋沁馨, 周国华

王瑞, 周欣洁, 杜熙钦, 郝翟, 王琛, 邹秉杰, 宋沁馨, 周国华. 新一代基因编辑工具研究进展[J]. 中国药科大学学报, 2022, 53(6): 633-642. DOI: 10.11665/j.issn.1000-5048.20220601
引用本文: 王瑞, 周欣洁, 杜熙钦, 郝翟, 王琛, 邹秉杰, 宋沁馨, 周国华. 新一代基因编辑工具研究进展[J]. 中国药科大学学报, 2022, 53(6): 633-642. DOI: 10.11665/j.issn.1000-5048.20220601
WANG Rui, ZHOU Xinjie, DU Xiqin, HAO Di, WANG Chen, ZOU Bingjie, SONG Qinxin, ZHOU Guohua. Research progress of next-generation gene editing tools[J]. Journal of China Pharmaceutical University, 2022, 53(6): 633-642. DOI: 10.11665/j.issn.1000-5048.20220601
Citation: WANG Rui, ZHOU Xinjie, DU Xiqin, HAO Di, WANG Chen, ZOU Bingjie, SONG Qinxin, ZHOU Guohua. Research progress of next-generation gene editing tools[J]. Journal of China Pharmaceutical University, 2022, 53(6): 633-642. DOI: 10.11665/j.issn.1000-5048.20220601

新一代基因编辑工具研究进展

基金项目: 国家自然科学基金资助项目(No.82173780);药物质量与安全预警教育部重点实验室资助项目(No.DQCP20/21MS04);国家级大学生创新创业训练计划项目成果(No.202210316001Z,No.202210316009Z)

Research progress of next-generation gene editing tools

Funds: This study was funded by the National Natural Science Foundation of China (No.82173780), the Open Project Program of MOE Key Laboratory of Drug Quality Control and Pharmacovigilance (No.DQCP20/21MS04); National Innovation and Entrepreneurship Training Program for Undergraduate (No.202210316001Z and 202210316009Z)
  • 摘要: 目前,以核酸酶为主要成分的基因编辑工具已经成功实现可编程地对哺乳动物基因组进行靶向突变或插入删除,从锌指核酸酶(ZFNs)、转录激活子样效应子核酸酶(TALENs)、CRISPR/Cas系统发展到更安全更精准的Cas9融合蛋白基因编辑工具和其他核酸酶基因编辑工具,本文系统阐述了基因编辑的发展演进历程、介绍了新一代基因编辑工具的开发与优化,针对基因编辑工具的临床应用与面临的挑战进行了展望。
    Abstract: Gene editing tools with nucleases as the main component have now implemented programmable targeted mutagenesis or insertion or deletion of mammalian genomes.From zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas system to safer and more accurate Cas9 fusion protein gene editing tools and other nuclease gene editing tools, this paper systematically describes the development and evolution of gene editing, with detailed introduction to the development and optimization of next-generation gene editing tools, and a prospect of the clinical application of and challenges for gene editing tools.
  • [1] . Science,2022,376(6588):44-53.
    [2] Arnold C. 11 clinical trials that will shape medicine in 2022[J]. Nat Med,2021,27(12):2062-2064.
    [3] Anzalone AV,Koblan LW,Liu DR. Genome editing with CRISPR-Cas nucleases,base editors,transposases and prime editors[J]. Nat Biotechnol,2020,38(7):824-844.
    [4] Geurts AM,Moreno C. Zinc-finger nucleases: new strategies to target the rat genome[J]. Clin Sci,2010,119(8):303-311.
    [5] Joung JK,Sander JD. TALENs:a widely applicable technology for targeted genome editing[J]. Nat Rev Mol Cell Biol,2013,14(1):49-55.
    [6] Pickar-Oliver A,Gersbach CA. The next generation of CRISPR-Cas technologies and applications[J]. Nat Rev Mol Cell Biol,2019,20(8):490-507.
    [7] Kim YG,Cha J,Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci U S A,1996,93(3):1156-1160.
    [8] Li H,Yang Y,Hong W,et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms,advances and prospects[J]. Signal Transduct Target Ther,2020,5(1):1-23.
    [9] Becker S,Boch J. TALE and TALEN genome editing technologies[J]. Gene Genome Ed,2021,2:100007.
    [10] D''Souza SS,Kumar A,Weinfurter J,et al. Generation of SIV-resistant T cells and macrophages from nonhuman primate induced pluripotent stem cells with edited CCR5 locus[J]. Stem Cell Reports,2022,17(4):953-963.
    [11] Knott GJ,Doudna JA. CRISPR-Cas guides the future of genetic engineering[J]. Science,2018,361(6405):866-869.
    [12] Cong L,Ran FA,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
    [13] Geurts MH,de Poel E,Pleguezuelos-Manzano C,et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids[J]. Life Sci Alliance,2021,4(10):.1-12.
    [14] Enache OM,Rendo V,Abdusamad M,et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations[J]. Nat Genet,2020,52(7):662-668.
    [15] Leibowitz ML,Papathanasiou S,Doerfler PA,et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing[J]. Nat Genet,2021,53(6):895-905.
    [16] Xu S,Kim J,Tang Q,et al. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway[J]. Protein Cell,2020,11(5):352-365.
    [17] Komor AC,Kim YB,Packer MS,et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature,2016,533(7603):420-424.
    [18] Gaudelli NM,Komor AC,Rees HA,et al.Publisher Correction:Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature,2016,533(7603):420-424.
    [19] Yeh WH,Shubina-Oleinik O,Levy JM,et al. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness[J]. Sci Transl Med,2020,12(546):eaay9101.
    [20] Anzalone AV,Randolph PB,Davis JR,et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature,2019,576(7785):149-157.
    [21] Tremblay G,Rousseau J,Mbakam CH,Tremblay JP. Insertion of the icelandic mutation (A673T) by prime editing: a potential preventive treatment for familial and sporadic Alzheimer''s disease[J]. CRISPR J,2022,5(1):109-122.
    [22] Collias D,Beisel CL. CRISPR technologies and the search for the PAM-free nuclease[J]. Nat Commun,2021,12(1):555.
    [23] Zhang X,Zhu B,Chen L,et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol,2020,38(7):856-860.
    [24] Grünewald J,Zhou R,Lareau CA,et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol,2020,38(7):861-864.
    [25] Liang Y,Xie J,Zhang Q,et al. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns[J]. Nucleic Acids Res,2022,50(9):5384-5399.
    [26] Jiang T,Zhang XO,Weng Z,et al. Deletion and replacement of long genomic sequences using prime editing[J]. Nat Biotechnol,2022,40(2):227-234.
    [27] Choi J,Chen W,Suiter CC,et al. Precise genomic deletions using paired prime editing[J]. Nat Biotechnol,2022,40(2):218-226.
    [28] Anzalone AV,Gao XD,Podracky CJ,et al. Programmable deletion,replacement,integration and inversion of large DNA sequences with twin prime editing[J]. Nat Biotechnol,2022,40(5):731-740.
    [29] Zhuang Y,Liu J,Wu H,et al. Increasing the efficiency and precision of prime editing with guide RNA pairs[J]. Nat Chem Biol,2022,18(1):29-37.
    [30] Wang J,He Z,Wang G,et al. Efficient targeted insertion of large DNA fragments without DNA donors[J]. Nat Methods,2022(1):19331-19340.
    [31] Christie KA,Guo JA,Silverstein RA,et al. Precise DNA cleavage using CRISPR-SpRYgests[J]. Nat Biotechnol,2022:1-8.doi:10.1038/s41587-022-01492-y.
    [32] Huang TP,Heins ZJ,Miller SM,et al. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs[J]. Nat Biotechnol,2022:1-12.doi:10.1038/s41587-022-01410-2.
    [33] Shi YJ,Duan M,Ding JM,et al. DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9[J]. Mol Cell,2022,82(21):4160-4175.e6.
    [34] Xu S,Cao S,Zou B,et al. An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease[J].Genome Biol,2016,17(1):186.
    [35] Tian K,Guo Y,Zou B,et al. DNA and RNA editing without sequence limitation using the flap endonuclease 1 guided by hairpin DNA probes[J].Nucleic Acids Res,2020,48(20):e117.
    [36] Wu Z,Zhang Y,Yu H,et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J].Nat Chem Biol,2021,17(11):1132-1138.
    [37] Kim DY,Lee JM,Moon SB,et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus[J].Nat Biotechnol,2022,40(1):94-102.
    [38] Tsuchida CA,Zhang S,Doost MS,et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity[J].Mol Cell,2022,82(6):1199-1209.e6.
    [39] Schuler G,Hu C,Ke A. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9[J].Science,2022,376(6600):1476-1481.
    [40] Zhi S,Chen Y,Wu G,et al. Dual-AAV delivering split prime editor system for in vivo genome editing[J]. Mol Ther,2022,30(1):283-294.
    [41] Grünewald J,Miller BR,Szalay RN,et al. Engineered CRISPR prime editors with compact,untethered reverse transcriptases[J].Nat Biotechnol,2022:1-7.doi:10.1038/s41587-022-01473-1.
    [42] Liu B,Dong X,Cheng H,et al. A split prime editor with untethered reverse transcriptase and circular RNA template[J].Nat Biotechnol,2022,40(9):1388-1393.
    [43] Huang C,Han Z,Evangelopoulos M,et al. CRISPR spherical nucleic acids[J]. J Am Chem Soc,2022,144(41):18756-18760.
  • 期刊类型引用(1)

    1. 王丹维,张方方,金亮,吴洁. miR-802靶向Hnf1B抑制胰岛素分泌的作用研究. 中国药科大学学报. 2020(01): 99-106 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  942
  • HTML全文浏览量:  10
  • PDF下载量:  664
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-12-03
  • 修回日期:  2022-12-19
  • 刊出日期:  2022-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭