[1] |
. Science,2022,376(6588):44-53.
|
[2] |
Arnold C. 11 clinical trials that will shape medicine in 2022[J]. Nat Med,2021,27(12):2062-2064.
|
[3] |
Anzalone AV,Koblan LW,Liu DR. Genome editing with CRISPR-Cas nucleases,base editors,transposases and prime editors[J]. Nat Biotechnol,2020,38(7):824-844.
|
[4] |
Geurts AM,Moreno C. Zinc-finger nucleases: new strategies to target the rat genome[J]. Clin Sci,2010,119(8):303-311.
|
[5] |
Joung JK,Sander JD. TALENs:a widely applicable technology for targeted genome editing[J]. Nat Rev Mol Cell Biol,2013,14(1):49-55.
|
[6] |
Pickar-Oliver A,Gersbach CA. The next generation of CRISPR-Cas technologies and applications[J]. Nat Rev Mol Cell Biol,2019,20(8):490-507.
|
[7] |
Kim YG,Cha J,Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci U S A,1996,93(3):1156-1160.
|
[8] |
Li H,Yang Y,Hong W,et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms,advances and prospects[J]. Signal Transduct Target Ther,2020,5(1):1-23.
|
[9] |
Becker S,Boch J. TALE and TALEN genome editing technologies[J]. Gene Genome Ed,2021,2:100007.
|
[10] |
D''Souza SS,Kumar A,Weinfurter J,et al. Generation of SIV-resistant T cells and macrophages from nonhuman primate induced pluripotent stem cells with edited CCR5 locus[J]. Stem Cell Reports,2022,17(4):953-963.
|
[11] |
Knott GJ,Doudna JA. CRISPR-Cas guides the future of genetic engineering[J]. Science,2018,361(6405):866-869.
|
[12] |
Cong L,Ran FA,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
|
[13] |
Geurts MH,de Poel E,Pleguezuelos-Manzano C,et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids[J]. Life Sci Alliance,2021,4(10):.1-12.
|
[14] |
Enache OM,Rendo V,Abdusamad M,et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations[J]. Nat Genet,2020,52(7):662-668.
|
[15] |
Leibowitz ML,Papathanasiou S,Doerfler PA,et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing[J]. Nat Genet,2021,53(6):895-905.
|
[16] |
Xu S,Kim J,Tang Q,et al. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway[J]. Protein Cell,2020,11(5):352-365.
|
[17] |
Komor AC,Kim YB,Packer MS,et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature,2016,533(7603):420-424.
|
[18] |
Gaudelli NM,Komor AC,Rees HA,et al.Publisher Correction:Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature,2016,533(7603):420-424.
|
[19] |
Yeh WH,Shubina-Oleinik O,Levy JM,et al. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness[J]. Sci Transl Med,2020,12(546):eaay9101.
|
[20] |
Anzalone AV,Randolph PB,Davis JR,et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature,2019,576(7785):149-157.
|
[21] |
Tremblay G,Rousseau J,Mbakam CH,Tremblay JP. Insertion of the icelandic mutation (A673T) by prime editing: a potential preventive treatment for familial and sporadic Alzheimer''s disease[J]. CRISPR J,2022,5(1):109-122.
|
[22] |
Collias D,Beisel CL. CRISPR technologies and the search for the PAM-free nuclease[J]. Nat Commun,2021,12(1):555.
|
[23] |
Zhang X,Zhu B,Chen L,et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol,2020,38(7):856-860.
|
[24] |
Grünewald J,Zhou R,Lareau CA,et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol,2020,38(7):861-864.
|
[25] |
Liang Y,Xie J,Zhang Q,et al. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns[J]. Nucleic Acids Res,2022,50(9):5384-5399.
|
[26] |
Jiang T,Zhang XO,Weng Z,et al. Deletion and replacement of long genomic sequences using prime editing[J]. Nat Biotechnol,2022,40(2):227-234.
|
[27] |
Choi J,Chen W,Suiter CC,et al. Precise genomic deletions using paired prime editing[J]. Nat Biotechnol,2022,40(2):218-226.
|
[28] |
Anzalone AV,Gao XD,Podracky CJ,et al. Programmable deletion,replacement,integration and inversion of large DNA sequences with twin prime editing[J]. Nat Biotechnol,2022,40(5):731-740.
|
[29] |
Zhuang Y,Liu J,Wu H,et al. Increasing the efficiency and precision of prime editing with guide RNA pairs[J]. Nat Chem Biol,2022,18(1):29-37.
|
[30] |
Wang J,He Z,Wang G,et al. Efficient targeted insertion of large DNA fragments without DNA donors[J]. Nat Methods,2022(1):19331-19340.
|
[31] |
Christie KA,Guo JA,Silverstein RA,et al. Precise DNA cleavage using CRISPR-SpRYgests[J]. Nat Biotechnol,2022:1-8.doi:10.1038/s41587-022-01492-y.
|
[32] |
Huang TP,Heins ZJ,Miller SM,et al. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs[J]. Nat Biotechnol,2022:1-12.doi:10.1038/s41587-022-01410-2.
|
[33] |
Shi YJ,Duan M,Ding JM,et al. DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9[J]. Mol Cell,2022,82(21):4160-4175.e6.
|
[34] |
Xu S,Cao S,Zou B,et al. An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease[J].Genome Biol,2016,17(1):186.
|
[35] |
Tian K,Guo Y,Zou B,et al. DNA and RNA editing without sequence limitation using the flap endonuclease 1 guided by hairpin DNA probes[J].Nucleic Acids Res,2020,48(20):e117.
|
[36] |
Wu Z,Zhang Y,Yu H,et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J].Nat Chem Biol,2021,17(11):1132-1138.
|
[37] |
Kim DY,Lee JM,Moon SB,et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus[J].Nat Biotechnol,2022,40(1):94-102.
|
[38] |
Tsuchida CA,Zhang S,Doost MS,et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity[J].Mol Cell,2022,82(6):1199-1209.e6.
|
[39] |
Schuler G,Hu C,Ke A. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9[J].Science,2022,376(6600):1476-1481.
|
[40] |
Zhi S,Chen Y,Wu G,et al. Dual-AAV delivering split prime editor system for in vivo genome editing[J]. Mol Ther,2022,30(1):283-294.
|
[41] |
Grünewald J,Miller BR,Szalay RN,et al. Engineered CRISPR prime editors with compact,untethered reverse transcriptases[J].Nat Biotechnol,2022:1-7.doi:10.1038/s41587-022-01473-1.
|
[42] |
Liu B,Dong X,Cheng H,et al. A split prime editor with untethered reverse transcriptase and circular RNA template[J].Nat Biotechnol,2022,40(9):1388-1393.
|
[43] |
Huang C,Han Z,Evangelopoulos M,et al. CRISPR spherical nucleic acids[J]. J Am Chem Soc,2022,144(41):18756-18760.
|