• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

黄葵总黄酮对CYP450酶的抑制作用

许瑶, 彭英, 王广基, 孙建国

许瑶, 彭英, 王广基, 孙建国. 黄葵总黄酮对CYP450酶的抑制作用[J]. 中国药科大学学报, 2023, 54(2): 208-217. DOI: 10.11665/j.issn.1000-5048.2023021402
引用本文: 许瑶, 彭英, 王广基, 孙建国. 黄葵总黄酮对CYP450酶的抑制作用[J]. 中国药科大学学报, 2023, 54(2): 208-217. DOI: 10.11665/j.issn.1000-5048.2023021402
XU Yao, PENG Ying, WANG Guangji, SUN Jianguo. Inhibition of total flavonoids from Abelmoschus Manihot on cytochrome P450[J]. Journal of China Pharmaceutical University, 2023, 54(2): 208-217. DOI: 10.11665/j.issn.1000-5048.2023021402
Citation: XU Yao, PENG Ying, WANG Guangji, SUN Jianguo. Inhibition of total flavonoids from Abelmoschus Manihot on cytochrome P450[J]. Journal of China Pharmaceutical University, 2023, 54(2): 208-217. DOI: 10.11665/j.issn.1000-5048.2023021402

黄葵总黄酮对CYP450酶的抑制作用

基金项目: 中国医学科学院医学与健康科技创新工程资助项目(No.2021-I2M-5-011)

Inhibition of total flavonoids from Abelmoschus Manihot on cytochrome P450

Funds: This study was supported by the Innovation Fund for Medical Sciences of Chinese Academy of Medical Sciences (No.2021-I2M-5-011)
  • 摘要: 研究黄葵总黄酮对人肝微粒体中细胞色素P450(CYP450)酶不同亚型的影响机制并在大鼠体内对受抑制最为显著的CYP2C9亚型进行验证。利用HPLC-MS/MS技术,通过鸡尾酒法在体外评估黄葵总黄酮对人CYP3A4、CYP2C9、CYP2C19、CYP2E1、CYP1A2和CYP2D6的抑制效应,考察其抑制机制,计算酶抑制动力学参数。在大鼠体内通过比较单次或多次给药200 mg/kg黄葵总黄酮与等剂量CMC-Na后甲苯磺丁脲的药代动力学行为差异,评估黄葵总黄酮对大鼠CYP2C11酶(CYP2C9同工酶)的影响。结果表明黄葵总黄酮对CYP2C9和CYP2E1存在显著抑制作用,IC50分别为3.22和8.64 μg/mL,对其他亚型也表现出一定的抑制作用,IC50介于20~30 μg/mL。黄葵总黄酮并非为潜在的时间依赖性抑制剂,它能竞争性抑制CYP2E1和CYP2C9,抑制常数Ki分别为3.84和6.33 μg/mL,对CYP3A4介导的睾酮-6β-羟基化和咪达唑仑-4-羟基化的抑制方式为非竞争性抑制,Ki分别为7.37和3.32 μg/mL,同时它也是CYP1A2、CYP2D6和CYP2C19的非竞争性抑制剂,Ki分别为8.66、11.49和21.94 μg/mL。在大鼠体内,黄葵总黄酮并没有引起大鼠体内CYP2C11探针底物甲苯磺丁脲药动学行为的改变,但影响了其代谢物4-羟基甲苯磺丁脲的AUC0-tcmax等参数(P < 0.05)。因此在临床研究中应当考察可能存在的CYP450酶介导的药物-药物相互作用。
    Abstract: To investigate the influential mechanism of total flavonoids from Abelmoschus Manihot (HKZ) on cytochrome P450 (CYP450) isoforms in human liver microsomes and to verify its effect on the most significantly inhibited subtype CYP2C9 in rats.The inhibitory effects of HKZ on human CYP3A4, CYP2C9, CYP2C19, CYP2E1, CYP1A2 and CYP2D6 were evaluated through the cocktail method using ultra-performance liquid chromatography tandem mass spectrometry, then its inhibitory mechanism was investigated and kinetic parameters of enzyme inhibition were calculated By comparing the pharmacokinetic behaviors of tolbutamide after single or multiple administration of 200 mg/kg HKZ and equal dose of CMC-Na in rats, the effects of HKZ on CYP2C11 enzyme (CYP2C9 isoenzyme) was estimated.The results indicated the significant inhibitory effect of HKZ on CYP2C9 and CYP2E1 with IC50 of 3.22 and 8.64 μg/mL, respectively. Also, it showed certain inhibitory ability on other isoforms with IC50 of 20-30 μg/mL.As demonstrated, HKZ may not be a time-dependent inhibitor which competitively inhibited CYP2E1 and CYP2C9 with Ki of 3.84 and 6.33 μg/mL.In contrast, it showed noncompetitive inhibition on CYP3A4 mediated testosterone-6β-hydroxylation and midazolam-4-hydroxylation reaction with Ki of 7.37 and 3.32 μg/mL.It was also a noncompetitive inhibitor of CYP1A2, CYP2D6 and CYPC219 with Ki values of 8.66, 11.49 and 21.94 μg/mL. HKZ did not change the pharmacokinetic parameters of CYP2C11 probe substrate tolbutamide in rat, but it affected the AUC0-t, cmax of 4-hydroxytolubutamide (P < 0.05). Therefore, drug-drug interaction mediated by CYP450 should be considered in clinical study.
  • [1] Yin SX, Cai ZC, Chen CH, et al. Comparative study on chemical constituents of medicinal and non-medicinal parts of Flos abelmoschus manihot, based on metabolite profiling coupled with multivariate statistical analysis[J]. Horticulturae, 2022, 8(4): 317.
    [2] Xia KY, Zhang CL, Cao ZY, et al. Chemical constituents from Corolla abelmoschi[J]. Strait Pharm J (海峡药学), 2019, 31(9): 58-61.
    [3] Yin SX, Wei lf, Mei YQ, et al. Simultaneous determination of multiple bioactive constituents in Abelmoschi Corolla by UFLC-QTRAP-MS/MS[J]. China J Chin Mater Med (中国中药杂志), 2021, 46(10): 2527-2536.
    [4] Li SH, Li N, Qin SS, et al. Purification, characterization and bioactivities of polysaccharides from the stalk of Abelmoschus manihot (L.) medic[J]. Food Sci Technol Res, 2020, 26(5): 611-621.
    [5] Luan F, Wu QH, Yang Y, et al. Traditional uses, chemical constituents, biological properties, clinical settings, and toxicities of Abelmoschus manihot L. : a comprehensive review[J]. Front Pharmacol, 2020, 11: 1068.
    [6] Han WB, Ma Q, Liu YL, et al. Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling[J]. Phytomedicine, 2019, 57: 203-214.
    [7] Deng JF, He ZP, Li XR, et al. Huangkui capsule attenuates lipopolysaccharide-induced acute lung injury and macrophage activation by suppressing inflammation and oxidative stress in mice[J]. Evid Based Complement Alternat Med, 2021, 2021: 6626483.
    [8] Cai HD, Tao WW, Su SL, et al. Antidepressant activity of flavonoid ethanol extract of Abelmoschus manihot Corolla with BDNF up-regulation in the hippocampus[J]. Acta Pharm Sin (药学学报), 2017, 52(2): 222-228.
    [9] Gao YN, Liang ZH, Lv NY, et al. Exploring the total flavones of Abelmoschus manihot against IAV-induced lung inflammation by network pharmacology[J]. BMC Complement Med Ther, 2022, 22(1): 36.
    [10] Pan XX, Tao JH, Jiang S, et al. Characterization and immunomodulatory activity of polysaccharides from the stems and leaves of Abelmoschus manihot and a sulfated derivative[J]. Int J Biol Macromol, 2018, 107: 9-16.
    [11] Hou JH, Qian JJ, Li ZL, et al. Bioactive compounds from Abelmoschus manihot l. alleviate the progression of multiple myeloma in mouse model and improve bone marrow microenvironment[J]. Onco Targets Ther, 2020, 13: 959-973.
    [12] Yang BL, Zhu P, Li YR, et al. Total flavone of Abelmoschus manihot suppresses epithelial-mesenchymal transition via interfering transforming growth factor-β1 signaling in Crohn''s disease intestinal fibrosis[J]. World J Gastroenterol, 2018, 24(30): 3414-3425.
    [13] Yang ZZ, Tang HT, Shao Q, et al. Enrichment and purification of the bioactive flavonoids from flower of Abelmoschus manihot (L.) medic using macroporous resins[J]. Molecules, 2018, 23(10): 2649.
    [14] Lai XY, Liang H, Zhao YY, et al. Simultaneous determination of seven active flavonols in the flowers of Abelmoschus manihot by HPLC[J]. J Chromatogr Sci, 2009, 47(3): 206-210.
    [15] Dahlinger D, Duechting S, Nuecken D, et al. Development and validation of an in vitro, seven-in-one human cytochrome P450 assay for evaluation of both direct and time-dependent inhibition[J]. J Pharmacol Toxicol Methods, 2016, 77: 66-75.
    [16] Liu ZX, Liu SJ, Ju WZ, et al. Effects of Huangkui Capsule on the P450 activities in rats[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2010, 15(4): 367-372.
    [17] Moon YJ, Wang XD, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism[J]. Toxicol Vitro, 2006, 20(2): 187-210.
    [18] Ortiz-Andrade R, Araujo-León JA, Sánchez-Recillas A, et al. Toxicological screening of four bioactive citroflavonoids: in vitro, in vivo, and in silico approaches[J]. Molecules, 2020, 25(24): 5959.
    [19] Kahma H, Aurinsalo L, Neuvonen M, et al. An automated cocktail method for in vitro assessment of direct and time-dependent inhibition of nine major cytochrome P450 enzymes-application to establishing CYP2C8 inhibitor selectivity[J]. Eur J Pharm Sci, 2021, 162: 105810.
    [20] Jia YW, Peng Y, Sun JG, et al. "N-in-One Cocktail" method to evaluate inhibition effects of 4-hydroxylmethylphenyl-O-β-D-pyranosyl alloside on CYP450 enzymes[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2014, 19(12): 1371-1375.
    [21] Lou D, Bao SS, Li YH, et al. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(5): 611-618.
    [22] Rastogi H, Jana S. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome P450 activities[J]. Phytother Res, 2014, 28(12): 1873-1878.
    [23] Ye LH, Yan MZ, Kong LT, et al. In vitro inhibition of quercetin and its glycosides on P450 enzyme activities[J]. Chin Pharm J(中国药学杂志), 2014, 49(12): 1051-1055.
    [24] Fantoukh OI, Dale OR, Parveen A, et al. Safety assessment of phytochemicals derived from the globalized South African rooibos tea (Aspalathus linearis) through interaction with CYP, PXR, and P-gp[J]. J Agric Food Chem, 2019, 67(17): 4967-4975.
    [25] Cui MY, Li CH, Kong XY, et al. Influence of Flavonoids from Galium verum L. on the activities of cytochrome P450 isozymes and pharmacokinetic and pharmacodynamic of warfarin in rats[J]. Phcog Mag, 2019, 15(65): 645-651.
    [26] Zhang D, Wu GD, Hao HM, et al. Effect of total flavonoids of Hippophae rhamnoides L. on the activity and mRNA expression of CYP450 in rats[J]. Phcog Mag, 2022, 18(77): 82-88.
    [27] Bi YF, Zhu HB, Pi ZF, et al. Effects of flavonoides from the leaves of Acanthopanax on the activity of CYP450 isozymes in rat liver microsomes by a UPLC-MS/MS and cocktail probe substrates method[J]. Chem J Chin Univ (高等学校化学学报), 2013, 34(5): 1067-1071.
    [28] Mohutsky M, Hall SD. Irreversible enzyme inhibition kinetics and drug-drug interactions[J]. Methods Mol Biol, 2021, 2342: 51-88.
    [29] Gao J, Zhang YJ, Lei XQ, et al. Risk assessment of the inhibition of hydroxygenkwanin on human and rat cytochrome P450 by cocktail method[J]. Toxicol Vitro, 2022, 79: 105281.
    [30] Ramos CH, Rolim TS, de Souza TP, et al. Effect of food phenolic compounds on the activity of rat liver CYP2C subfamily enzymes evaluated by a newly validated method of high-performance liquid chromatography[J]. Rev Virtual Quim, 2019, 11(5): 1444-1456.
    [31] Lu J, Ding TG, Qin X, et al. In vitro and in vivo evaluation of cucurbitacin E on rat hepatic CYP2C11 expression and activity using LC-MS/MS[J]. Sci China Life Sci, 2017, 60(2): 215-224.
    [32] Guo YJ, Zheng SL. Effect of myricetin on cytochrome P450 isoforms CYP1A2, CYP2C9 and CYP3A4 in rats[J]. Pharmazie, 2014, 69(4): 306-310.
    [33] Liu ZX, Zhou L, Ju WZ, et al. Simultaneous determination of 5 major compositions in Huangkui capsules by HPLC[J]. China Pharm (中国药房), 2011, 22(12): 1129-1131.
    [34] Hou CS, Yang ZH, Sun XB. Simultaneous determination of tolbutamide and its metabolite 4-hydroxytolbutamide, chlorzoxazone in rat plasma by LC-MS-MS and application to pharmacokinetic study[J]. Chin J Exp Tradit Med Formulae (中国实验方剂学杂志), 2013, 19(12): 144-150.
  • 期刊类型引用(2)

    1. 赵世宇,刘帅兵,姚霞,田鑫. 英菲格拉替尼及其活性代谢产物对大鼠肝微粒体中CYPs和UGTs的抑制作用. 中国临床药理学杂志. 2024(16): 2368-2372 . 百度学术
    2. 母磊鑫,刘湉,柯彩依,白延婷,马群,陈昭. 生物样品中5种CYP450酶底物分析方法的建立. 中国医药导报. 2024(25): 41-45 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  157
  • HTML全文浏览量:  5
  • PDF下载量:  373
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-04-07
  • 刊出日期:  2023-04-24

目录

    /

    返回文章
    返回