[1] |
Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annu Rev Physiol, 2016, 78: 181-205.
|
[2] |
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.
|
[3] |
Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease[J]. Mol Metab, 2020, 42: 101092.
|
[4] |
Li H, Yu XH, Ou X, et al. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis[J]. Prog Lipid Res, 2021, 83: 101109.
|
[5] |
Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(4): 223-238.
|
[6] |
Jiao TY, Ma YD, Guo XZ, et al. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease[J]. Acta Pharmacol Sin, 2022, 43(5): 1103-1119.
|
[7] |
Luo J, Yang HY, Song BL. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245.
|
[8] |
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation[J]. Pharmacol Rev, 2010, 62(1): 1-96.
|
[9] |
Peng KP, Mo ZN, Tian GX. Serum lipid abnormalities and nonalcoholic fatty liver disease in adult males[J]. Am J Med Sci, 2017, 353(3): 236-241.
|
[10] |
Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease[J]. Hepatology,2007,46(4): 1081-1090.
|
[11] |
van Rooyen DM, Gan LT, Yeh MM, et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome[J].J Hepatol,2013,59(1): 144-152.
|
[12] |
Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, et al. New aspects of lipotoxicity in nonalcoholic steatohepatitis[J]. Int J Mol Sci, 2018, 19(7): 2034.
|
[13] |
Mota M, Banini BA, Cazanave SC, et al. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1049-1061.
|
[14] |
Arguello G, Balboa E, Arrese M, et al. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease[J]. Biochim Biophys Acta, 2015, 1852(9): 1765-1778.
|
[15] |
Wang XH, Tian Y, Guo ZJ, et al. Cholesterol metabolism and expression of its relevant genes in cultured steatotic hepatocytes[J]. J Dig Dis, 2009, 10(4): 310-314.
|
[16] |
Oliveira AF, Cunha DA, Ladriere L, et al. In vitro use of free fatty acids bound to albumin: a comparison of protocols[J]. Biotechniques, 2015, 58(5): 228-233.
|
[17] |
Alseekh S, Aharoni A, Brotman Y, et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices[J]. Nat Methods, 2021, 18(7): 747-756.
|
[18] |
Silva LP, Lorenzi PL, Purwaha P, et al. Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines[J]. Anal Chem, 2013, 85(20): 9536-9542.
|
[19] |
Minowa K, Rodriguez-Agudo D, Suzuki M, et al. Insulin dysregulation drives mitochondrial cholesterol metabolite accumulation: initiating hepatic toxicity in nonalcoholic fatty liver disease[J]. J Lipid Res, 2023, 64(5): 100363.
|
[20] |
Borah K, Rickman OJ, Voutsina N, et al. A quantitative LC-MS/MS method for analysis of mitochondrial-specific oxysterol metabolism[J]. Redox Biol, 2020, 36: 101595.
|
[21] |
Henkel AS, LeCuyer B, Olivares S, et al. Endoplasmic reticulum stress regulates hepatic bile acid metabolism in mice[J]. Cell Mol Gastroenterol Hepatol, 2017, 3(2): 261-271.
|
[22] |
Brown GT, Kleiner DE. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Metabolism, 2016, 65(8): 1080-1086.
|
[23] |
Gambino R, Bugianesi E, Rosso C, et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load[J]. Int J Mol Sci, 2016, 17(4): 479.
|
[24] |
Gómez-Lechón MJ, Donato MT, Martínez-Romero A, et al. A human hepatocellular in vitro model to investigate steatosis[J]. Chem Biol Interact, 2007, 165(2): 106-116.
|
[25] |
Moravcová A, ?ervinková Z, Ku?era O, et al. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture[J]. Physiol Res, 2015, 64(Suppl 5): S627-S636.
|
[26] |
Zhao MG, Yang HM, Jiang CH, et al. Intervention effects of the triterpenoids from Cyclocaryapaliurus on free fatty acids-induced steatosis in HepG2 cells[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(3): 333-340.
|
[27] |
van Rooyen DM, Larter CZ, Haigh WG, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis[J]. Gastroenterology, 2011, 141(4): 1393-1403.
|
[28] |
Aguilar-Olivos NE, Carrillo-Córdova D, Oria-Hernández J, et al. The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease[J]. Ann Hepatol, 2015, 14(4): 487-493.
|
[29] |
Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control[J]. Nat Rev Genet, 2020, 21(10): 630-644.
|
[30] |
Jiao N, Baker SS, Chapa-Rodriguez A, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut, 2018, 67(10): 1881-1891.
|
[31] |
Conde de la Rosa L, Garcia-Ruiz C, Vallejo C, et al. STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway[J]. J Hepatol, 2021, 74(6): 1429-1441.
|
[32] |
Mouzaki M, Wang AY, Bandsma R, et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease[J]. PLoS One, 2016, 11(5): e0151829.
|
[33] |
Miyake JH, Wang SL, Davis RA. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase[J]. J Biol Chem, 2000, 275(29): 21805-21808.
|
[34] |
Montero J, Mari M, Colell A, et al. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death[J]. Biochim Biophys Acta, 2010, 1797(6/7): 1217-1224.
|
[35] |
Garenc C, Julien P, Levy E. Oxysterols in biological systems: the gastrointestinal tract, liver, vascular wall and central nervous system[J]. Free Radic Res, 2010, 44(1): 47-73.
|
[36] |
Kakiyama G, Minowa K, Rodriguez-Agudo D, et al. Coffee modulates insulin-hepatocyte nuclear factor-4α-Cyp7b1 pathway and reduces oxysterol-driven liver toxicity in a nonalcoholic fatty liver disease mouse model[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 323(5): G488-G500.
|
[37] |
Bieghs V, Hendrikx T, van Gorp PJ, et al. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice[J]. Gastroenterology, 2013, 144(1): 167-178.
|