Citation: | XIAO Yue, YUAN Shuai, LUO Ruxin, et al. Research progress on quality control methods for monitoring illicit drugs use in wastewater[J]. J China Pharm Univ, 2025, 56(2): 139 − 147. DOI: 10.11665/j.issn.1000-5048.2024051401 |
The use of wastewater analysis, or wastewater-based epidemiology, to assess and monitor the situation of drug abuse is now widely used at home and abroad. However, there is currently a lack of effective evaluation methods and effective ways of comparison, supervision and standardization, which is not conducive to the analysis and comparisons of data in different countries and regions. Quality control techniques can control the laboratory's analytical errors, safeguard the consistency and comparability of identification conclusions, and promote the further improvement of the level and capacity of urban drug governance, thus playing significant roles. This paper provides an overview of sample collection, sample preservation and transportation, laboratory analysis, back-calculation of drug use and external laboratory quality control in the process of wastewater analysis, with a view to exploring more comprehensive scientific and objective methods and approaches suitable for examining and evaluating qualitative and quantitative analysis of drugs in wastewater among laboratories.
[1] |
Boogaerts T, Ahmed F, Choi PM, et al. Current and future perspectives for wastewater-based epidemiology as a monitoring tool for pharmaceutical use[J]. Sci Total Environ, 2021, 789: 148047. doi: 10.1016/j.scitotenv.2021.148047
|
[2] |
Moslah B, Smaoui O, Nouioui MA, et al. Sewage analysis as an alternative tool for assessing drug of abuse and new psychoactive substances in Tunisia[J]. Forensic Sci Int, 2023, 347: 111672. doi: 10.1016/j.forsciint.2023.111672
|
[3] |
Santana-Viera S, Lara-Martín PA, González-Mazo E. High resolution mass spectrometry (HRMS) determination of drugs in wastewater and wastewater based epidemiology in Cadiz Bay (Spain)[J]. J Environ Manage, 2023, 341: 118000. doi: 10.1016/j.jenvman.2023.118000
|
[4] |
Zheng WQ, Ning HY, Chen H, et al. Analysis of 11 drugs in wastewater by flow injection-tandem mass spectrometry[J]. Chin J Anal Lab (分析试验室), 2024, 43(5): 705-710.
|
[5] |
Wang Y, Xu L, Xu P, et al. Optimization and validation of the analytical methods to detect common illicit drugs in sewage[J]. J China Pharm Univ (中国药科大学学报), 2022, 53(4): 467-472.
|
[6] |
Ren H, Zhang SJ, Zhao YL, et al. Screening of 50 emerging contaminants in wastewater by micro-direct-injection UPLC-MS/MS[J]. J Chin Mass Spectrom Soc (质谱学报), 2023, 44(2): 286-298.
|
[7] |
Dong LR, Diao YH, An N, et al. Analysis of internal quality control results based on test of quality control samples[J]. China Stand (中国标准化), 2023(21): 214-218.
|
[8] |
Jia JF, Fan YE. Quality control methods within the laboratory[J]. Shanxi Chem Ind (山西化工), 2023, 43(6): 123-124.
|
[9] |
Ren H, Zhao YL, Yuan S, et al. Discovering global trends in illicit drugs by wastewater-based epidemiology[J]. Chin J Forensic Sci (中国司法鉴定), 2022(5): 22-38.
|
[10] |
Ren H, Yuan S, Zheng JM, et al. Direct injection ultra-performance liquid chromatography-tandem mass spectrometry for the high-throughput determination of 11 illicit drugs and metabolites in wastewater[J]. J Chromatogr A, 2022, 1685: 463587. doi: 10.1016/j.chroma.2022.463587
|
[11] |
Zhang F. Quality control of field sampling of wastewater for environmental monitoring[J]. Low Carbon World(低碳世界), 2023, 13(10): 31-3.
|
[12] |
Liu X, Zeng TT, Zhang JX. Analysis of influencing factors of on-site sampling of environmental monitoring water and wastewater[J]. Technol Wind (科技风), 2020(1): 118.
|
[13] |
Fenet H, Arpin-Pont L, Vanhoutte-Brunier A, et al. Reducing PEC uncertainty in coastal zones: a case study on carbamazepine, oxcarbazepine and their metabolites[J]. Environ Int, 2014, 68: 177-184. doi: 10.1016/j.envint.2014.03.025
|
[14] |
Xie YM, Hu L, Wu QR. Study on influencing factors of on-site sampling of environmental monitoring water and wastewater[J]. Resour Econ Environ Prot (资源节约与环保), 2021(8): 54-55.
|
[15] |
Shanghai Association of Forensic Science. T/SHSFJD 0001—2021 Technical Specifications for Domestic Wastewater Sampling and Common Illicit Drugs Determination (生活污水采样及常见毒品检测技术规范)[S]. Shanghai, 2021.
|
[16] |
Technical Specifications for Wastewater Monitoring: HJ 91.1—2019[S].
|
[17] |
Ort C, Lawrence MG, Rieckermann J, et al. Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review[J]. Environ Sci Technol, 2010, 44(16): 6024-6035. doi: 10.1021/es100779n
|
[18] |
Castiglioni S, Bijlsma L, Covaci A, et al. Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers[J]. Environ Sci Technol, 2013, 47(3): 1452-1460. doi: 10.1021/es302722f
|
[19] |
Lin WT, Huang ZS, Gao SY, et al. Evaluating the stability of prescription drugs in municipal wastewater and sewers based on wastewater-based epidemiology[J]. Sci Total Environ, 2021, 754: 142414. doi: 10.1016/j.scitotenv.2020.142414
|
[20] |
Devault DA, Lévi Y, Karolak S. Applying sewage epidemiology approach to estimate illicit drug consumption in a tropical context: bias related to sewage temperature and pH[J]. Sci Total Environ, 2017, 584/585: 252-258. doi: 10.1016/j.scitotenv.2017.01.114
|
[21] |
Liu F, Nielsen AH, Vollertsen J. Sorption and degradation potential of pharmaceuticals in sediments from a stormwater retention pond[J]. Water, 2019, 11(3): 526. doi: 10.3390/w11030526
|
[22] |
Che XF, Liu PP, Ding Y, et al. In-sample stability and post sampling analysis of 21 illicit drugs, their metabolites and cotinine in wastewater[J]. Ecotoxicol Environ Saf, 2024, 270: 115900. doi: 10.1016/j.ecoenv.2023.115900
|
[23] |
Li JY, Gao JF, Zheng QD, et al. Effects of pH, temperature, suspended solids, and biological activity on transformation of illicit drug and pharmaceutical biomarkers in sewers[J]. Environ Sci Technol, 2021, 55(13): 8771-8782. doi: 10.1021/acs.est.1c01516
|
[24] |
Li JY, Gao JF, Thai PK, et al. Transformation of illicit drugs and pharmaceuticals in sewer sediments[J]. Environ Sci Technol, 2020, 54(20): 13056-13065. doi: 10.1021/acs.est.0c04266
|
[25] |
Hart OE, Halden RU. Simulated 2017 nationwide sampling at 13, 940 major U. S. sewage treatment plants to assess seasonal population bias in wastewater-based epidemiology[J]. Sci Total Environ, 2020, 727: 138406. doi: 10.1016/j.scitotenv.2020.138406
|
[26] |
Hart OE, Halden RU. Modeling wastewater temperature and attenuation of sewage-borne biomarkers globally[J]. Water Res, 2020, 172: 115473. doi: 10.1016/j.watres.2020.115473
|
[27] |
Hernández F, Castiglioni S, Covaci A, et al. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater[J]. Mass Spectrom Rev, 2018, 37(3): 258-280. doi: 10.1002/mas.21525
|
[28] |
Kneisel S, Speck M, Moosmann B, et al. Stability of 11 prevalent synthetic cannabinoids in authentic neat oral fluid samples: glass versus polypropylene containers at different temperatures[J]. Drug Test Anal, 2013, 5(7): 602-606. doi: 10.1002/dta.1497
|
[29] |
Djilali E, Pappalardo L, Posadino AM, et al. Effects of the storage conditions on the stability of natural and synthetic Cannabis in biological matrices for forensic toxicology analysis: an update from the literature[J]. Metabolites, 2022, 12(9): 801. doi: 10.3390/metabo12090801
|
[30] |
McCall AK, Bade R, Kinyua J, et al. Critical review on the stability of illicit drugs in sewers and wastewater samples[J]. Water Res, 2016, 88: 933-947. doi: 10.1016/j.watres.2015.10.040
|
[31] |
Chen C, Kostakis C, Irvine RJ, et al. Evaluation of pre-analysis loss of dependent drugs in wastewater: stability and binding assessments[J]. Drug Test Anal, 2013, 5(8): 716-721. doi: 10.1002/dta.1428
|
[32] |
Baker DR, Kasprzyk-Hordern B. Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid phase extraction and liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2011, 1218(44): 8036-8059. doi: 10.1016/j.chroma.2011.09.012
|
[33] |
Castiglioni S, Zuccato E, Crisci E, et al. Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2006, 78(24): 8421-8429. doi: 10.1021/ac061095b
|
[34] |
Bade R, Abdelaziz A, Nguyen L, et al. Determination of 21 synthetic cathinones, phenethylamines, amphetamines and opioids in influent wastewater using liquid chromatography coupled to tandem mass spectrometry[J]. Talanta, 2020, 208: 120479. doi: 10.1016/j.talanta.2019.120479
|
[35] |
Yuan S, Wang X, Wang RJ, et al. Simultaneous determination of 11 illicit drugs and metabolites in wastewater by UPLC-MS/MS[J]. Water Sci Technol, 2020, 82(9): 1771-1780. doi: 10.2166/wst.2020.445
|
[36] |
Wang JY, Qi LK, Hou CZ, et al. Automatic analytical approach for the determination of 12 illicit drugs and nicotine metabolites in wastewater using on-line SPE-UHPLC-MS/MS[J]. J Pharm Anal, 2021, 11(6): 739-745. doi: 10.1016/j.jpha.2021.01.002
|
[37] |
González-Mariño I, Thomas KV, Reid MJ. Determination of cannabinoid and synthetic cannabinoid metabolites in wastewater by liquid-liquid extraction and ultra-high performance supercritical fluid chromatography-tandem mass spectrometry[J]. Drug Test Anal, 2018, 10(1): 222-228. doi: 10.1002/dta.2199
|
[38] |
Yu LL, Chu TT, Hou CZ, et al. Quantitative determination of 10 illicit drugs in wastewater by liquid-liquid extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(6): 707-712.
|
[39] |
Sereshti H, Duman O, Tunç S, et al. Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples[J]. Mikrochim Acta, 2020, 187(9): 541. doi: 10.1007/s00604-020-04527-w
|
[40] |
Kalaboka M, Sakkas V. Magnetic solid-phase extraction based on silica and graphene materials for sensitive analysis of emerging contaminants in wastewater with the aid of UHPLC-Orbitrap-MS[J]. Molecules, 2023, 28(5): 2277. doi: 10.3390/molecules28052277
|
[41] |
Yuan S, Xiang Y, Chen LZ, et al. Magnetic solid-phase extraction based on polydopamine-coated magnetic nanoparticles for rapid and sensitive analysis of eleven illicit drugs and metabolites in wastewater with the aid of UHPLC-MS/MS[J]. J Chromatogr A, 2024, 1718: 464703. doi: 10.1016/j.chroma.2024.464703
|
[42] |
Bade R, Eaglesham G, Shimko KM, et al. Quantification of new psychoactive substances in Australian wastewater utilising direct injection liquid chromatography coupled to tandem mass spectrometry[J]. Talanta, 2023, 251: 123767. doi: 10.1016/j.talanta.2022.123767
|
[43] |
Yuan S, Luo RX, Xiang P. Research advances in the monitoring of new psychoactive substances in municipal wastewater[J]. J Forensic Med (法医学杂志), 2021, 37(4): 470-478.
|
[44] |
Yuan S, Ren H, Luo RX, et al. Comparison and application of the direct injection method and solid phase extraction method in wastewater toxicology monitoring[J]. Chin J Forensic Med (中国法医学杂志), 2023, 38(5): 559-565.
|
[45] |
Celma A, Sancho JV, Salgueiro-González N, et al. Simultaneous determination of new psychoactive substances and illicit drugs in sewage: potential of micro-liquid chromatography tandem mass spectrometry in wastewater-based epidemiology[J]. J Chromatogr A, 2019, 1602: 300-309. doi: 10.1016/j.chroma.2019.05.051
|
[46] |
Lee HJ, Oh JE. Target and suspect screening of (new) psychoactive substances in South Korean wastewater by LC-HRMS[J]. Sci Total Environ, 2023, 875: 162613. doi: 10.1016/j.scitotenv.2023.162613
|
[47] |
Hu LY. Internal quality control and external quality control of sewage analysis[J]. Guangdong Chem Ind (广东化工), 2019, 46(14): 122-123.
|
[48] |
Zhao ZY, Zheng QD, Tscharke BJ, et al. Refining the correction factor for a better monitoring of antidepressant use by wastewater-based epidemiology: a case study of amitriptyline[J]. Sci Total Environ, 2024, 926: 172057. doi: 10.1016/j.scitotenv.2024.172057
|
[49] |
Ahmed F, Tscharke B, O’Brien JW, et al. National wastewater reconnaissance of analgesic consumption in Australia[J]. Environ Sci Technol, 2023, 57(4): 1712-1720. doi: 10.1021/acs.est.2c06691
|
[50] |
Ministry of Justice. SF/T 0063—2020 General Rules for Method Validation in Forensic Toxicology (法医毒物分析方法验证通则) [S]. Beijing, 2020.
|
[51] |
Borova VL, Gago-Ferrero P, Pistos C, et al. Multi-residue determination of 10 selected new psychoactive substances in wastewater samples by liquid chromatography-tandem mass spectrometry[J]. Talanta, 2015, 144: 592-603. doi: 10.1016/j.talanta.2015.06.080
|
[52] |
Standardization Administration. GB-T 43449—2023 Forensic sciences-Specifications for Quality Control in Toxicology Laboratory (法庭科学 实验室质量控制规范) [S]. Beijing, 2023.
|
[53] |
Li F, Li Y. Some opinions about analytical method validation in drug research and development[J]. Chin J New Drugs (中国新药杂志), 2021, 30(10): 902-904.
|
[54] |
Nielsen MKK, Johansen SS. Internal quality control samples for hair testing[J]. J Pharm Biomed Anal, 2020, 188: 113459. doi: 10.1016/j.jpba.2020.113459
|
[55] |
China National Accreditation Service for Conformity Assessment. CNAS GL024—2018 Guidance on Quality Control Of Forensic Identify Process (鉴定过程的质量控制指南)[S]. Beijing, 2018.
|
[56] |
The Ministry of Public Security of the People's Republic of China. GA/T 2059-2023 Forensic Sciences—Examination Methods for 10 Illicit Drugs and Metabolites including morphine in Water Samples—LC-MS (法庭科学 水样中吗啡等10种毒品和代谢物检验 液相色谱-质谱法)[S]. Beijing, 2023.
|
[57] |
Xu L, Lu YT, Wu DF, et al. Application of the metal ions as potential population biomarkers for wastewater-based epidemiology: estimating tobacco consumption in Southern China[J]. Environ Geochem Health, 2023, 45(7): 5053-5065. doi: 10.1007/s10653-023-01558-z
|
[58] |
Wang DG. Sewage Epidemiology (污水流行病学) [M]. Beijing: Science Press, 2018.
|
[59] |
Li ZH, Hou CZ, Yuan S, et al. Research progress on methods for estimating population size by urban domestic sewage[J]. Chin J Forensic Sci (中国司法鉴定), 2023(2): 48-54.
|
[60] |
Gao JF, Tscharke BJ, Choi PM, et al. Using prescription and wastewater data to estimate the correction factors of atenolol, carbamazepine, and naproxen for wastewater-based epidemiology applications[J]. Environ Sci Technol, 2021, 55(11): 7551-7560. doi: 10.1021/acs.est.1c00931
|
[61] |
Huerta-Fontela M, Galceran MT, Martin-Alonso J, et al. Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain[J]. Sci Total Environ, 2008, 397(1/2/3): 31-40.
|
[62] |
Postigo C, López de Alda MJ, Barceló D. Drugs of abuse and their metabolites in the Ebro River Basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation[J]. Environ Int, 2010, 36(1): 75-84. doi: 10.1016/j.envint.2009.10.004
|
[63] |
Lai FY, O’Brien JW, Thai PK, et al. Cocaine, MDMA and methamphetamine residues in wastewater: consumption trends (2009-2015) in South East Queensland, Australia[J]. Sci Total Environ, 2016, 568: 803-809. doi: 10.1016/j.scitotenv.2016.05.181
|
[64] |
Gracia-Lor E, Zuccato E, Castiglioni S. Refining correction factors for back-calculation of illicit drug use[J]. Sci Total Environ, 2016, 573: 1648-1659. doi: 10.1016/j.scitotenv.2016.09.179
|
[65] |
Rosa Boleda MA, Teresa Galceran MA, Ventura F. Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain[J]. Water Res, 2009, 43(4): 1126-1136. doi: 10.1016/j.watres.2008.11.056
|
[66] |
Yavuz-Guzel E, Atasoy A, Gören İE, et al. Impact of COVID-19 pandemic on antidepressants consumptions by wastewater analysis in Turkey[J]. Sci Total Environ, 2022, 838 (Pt 2): 155916.
|
[67] |
Ceolotto N, Dollamore P, Hold A, et al. A new wastewater-based epidemiology workflow to estimate community wide non-communicable disease prevalence using pharmaceutical proxy data[J]. J Hazard Mater, 2024, 461: 132645. doi: 10.1016/j.jhazmat.2023.132645
|
[68] |
Zhang HQ, Li H, Sun T, et al. Establishment of multi-parameter population model and its application in assessment of psychoactive substances[J]. Environ Chem (环境化学), 2023, 42(4): 1156-1164.
|
[69] |
Hou CZ, Chu TT, Chen MY, et al. Application of multi-parameter population model based on endogenous population biomarkers and flow volume in wastewater epidemiology[J]. Sci Total Environ, 2021, 759: 143480. doi: 10.1016/j.scitotenv.2020.143480
|
[70] |
van Rossum HH. Technical quality assurance and quality control for medical laboratories: a review and proposal of a new concept to obtain integrated and validated QA/QC plans[J]. Crit Rev Clin Lab Sci, 2022, 59(8): 586-600. doi: 10.1080/10408363.2022.2088685
|
[71] |
Wilhelm A, Schoth J, Meinert-Berning C, et al. Interlaboratory comparison using inactivated SARS-CoV-2 variants as a feasible tool for quality control in COVID-19 wastewater monitoring[J]. Sci Total Environ, 2023, 903: 166540. doi: 10.1016/j.scitotenv.2023.166540
|
[72] |
Ntzifa A, Lianidou E. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis[J]. Crit Rev Clin Lab Sci, 2023, 60(8): 573-594. doi: 10.1080/10408363.2023.2230290
|
[73] |
van Nuijs ALN, Lai FY, Been F, et al. Multi-year inter-laboratory exercises for the analysis of illicit drugs and metabolites in wastewater: development of a quality control system[J]. Trac Trends Anal Chem, 2018, 103: 34-43. doi: 10.1016/j.trac.2018.03.009
|
[74] |
EMCDDA. Assessing Illicit Drugs in Wastewater: Advances in Wastewater-based Drug Epidemiology [M]. Luxembourg: Publications Office of the European Union, 2016: 82.
|
[75] |
Liu PP, Qiao HW, Chen J, et al. Application of sewage drug monitoring technology in drug control practice[J]. Police Technol (警察技术), 2022(5): 14-18.
|