Advanced Search
WANG Jing, HUO Meirong, ZHOU Jianping, ZHANG Yong, ZHANG Xuyuan, WANG Lei, YIN Tingjie. Drug-loaded micelles based on hyaluronic acid-paclitaxel prodrug: preparation and pharmacokinetic study in rats[J]. Journal of China Pharmaceutical University, 2013, 44(6): 520-525. DOI: 10.11665/j.issn.1000-5048.20130606
Citation: WANG Jing, HUO Meirong, ZHOU Jianping, ZHANG Yong, ZHANG Xuyuan, WANG Lei, YIN Tingjie. Drug-loaded micelles based on hyaluronic acid-paclitaxel prodrug: preparation and pharmacokinetic study in rats[J]. Journal of China Pharmaceutical University, 2013, 44(6): 520-525. DOI: 10.11665/j.issn.1000-5048.20130606

Drug-loaded micelles based on hyaluronic acid-paclitaxel prodrug: preparation and pharmacokinetic study in rats

More Information
  • The aims of this study were to prepare high paclitaxel loading amount polymeric micelles based on amphiphilic hyaluronic acid-paclitaxel prodrug. The drug-loading and entrapment efficiency were characterized by HPLC. The physico-chemical properties of PTX loaded HA-PTX micelles(PTX-HA-PTX)was characterized by dynamic light scattering(DLS), transmission electron microscope(TEM), atomic force microscopy(AFM)and X-ray diffraction(XRD), respectively. The critical micelle concentration(CMC)was determined by fluorescence pyrene probe techniques. The pharmacokinetics behaviors of PTX-HA-PTX micelles were performed in rats taking Taxol as control. It was found that the drug-loading and encapsulation efficiency of PTX-HA-PTX micelles reached up to 41. 8% and 95. 4%, respectively. The nanoparticle size was approximately 213. 2 nm and the Zeta potential was -15. 5 mV. PTX-HA-PTX micelles exhibited to be almost spherical in shape from the observation by TEM and AFM. XRD results confirmed that PTX was either molecularly dispersed in the polymers or distributed in the micelles in an amorphous state. In pharmacokinetic studies, the AUC value of PTX-HA-PTX micelles increased significantly(P< 0. 01)while the CL value decreased significantly(P< 0. 05)compared with Taxol, which indicated slower clearance rate, prolonged residence time and enhanced therapeutic effect. All the results demonstrated that PTX-HA-PTX micelles might be a promising PTX delivery carrier for efficient tumor therapy.
  • [1]
    Crown J,O′Leary M,Ooi WS.Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience[J].Oncologist,2004,9(Suppl 2):24-32.
    [2]
    Onetto N,Canetta R,Winograd B,et al.Overview of Taxol safety[J].J Natl Cancer Inst Monogr,1993(15):131-139.
    [3]
    Zhou J,Zhao WY,Ma X,et al.The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer[J].Biomaterials,2013,34(14):3 626-3 638.
    [4]
    Yang C,Wang J,Chen D,et al.Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138(-)CD34(-)tumor stem-like cells in multiple myeloma-bearing mice[J].Int J Nanomedicine,2013,8:1 439-1 449.
    [5]
    Takegami S,Takara K,Tanaka S,et al.Characterization,in vitro cytotoxicity and cellular accumulation of paclitaxel-loaded lipid nano-emulsions[J].J Microencapsul,2010,27(5):453-459.
    [6]
    Nornoo AO,Chow DS.Cremophor-free intravenous microemulsions for paclitaxel II.Stability,in vitro release and pharmacokinetics[J].Int J Pharm,2008,349(1/2):117-123.
    [7]
    Okamatsu A, Motoyama K, Onodera R, et al. Folate-appended beta-cyclodextrin as a promising tumor targeting carrier for antitumor drugs in vitro and in vivo[J].Bioconjug Chem,2013,24(4):724-733.
    [8]
    Pan Z,Gao Y,Heng L,et al.Amphiphilic N-(2,3-dihydroxypropyl)-chitosan-cholic acid micelles for paclitaxel delivery[J].Carbohydr Polym,2013,94(1):394-399.
    [9]
    Li J,Huo M,Wang J,et al.Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel[J].Biomaterials,2012,33(7):2 310-2 320.
    [10]
    Zhang X,Lu J,Huang Y,et al.PEG-farnesylthiosalicylate conjugate as a nanomicellar carrier for delivery of paclitaxel[J].Bioconjug Chem,2013,24(3):464-472.
    [11]
    Ye Q,Huo MR,Zhou JP.Pharmacokinetics and in situ absorption in rat intestine of paclitaxel-loaded amphiphilic chitosan micelle[J].J China Pharm Univ(中国药科大学学报),2012,43(5):401-405.
    [12]
    Nam K,Nam HY,Kim PH,et al.Paclitaxel-conjugated PEG and arginine-grafted bioreducible poly(disulfide amine)micelles for co-delivery of drug and gene[J].Biomaterials,2012,33(32):8 122-8 130.
    [13]
    Wang Y,Xin D,Liu K,et al.Heparin-paclitaxel conjugates as drug delivery system: synthesis,self-assembly property,drug release,and antitumor activity[J].Bioconjug Chem,2009,20(12):2 214-2 221.
    [14]
    Zou AF,Huo MR,Zhou JP,et al.Octreotide-mediated N-octyl-O,N-carboxymethyl chitosan micelles:preparation,characterization and research as doxorubicin delivery vectors[J].J China Pharm Univ(中国药科大学学报),2011,42(2):124-130.
    [15]
    Gaucher G, Marchessault RH, Leroux JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes[J].J Control Release,2010,143(1):2-12.
    [16]
    Oh EJ,Park K,Kim KS,et al.Target specific and long-acting delivery of protein,peptide,and nucleotide therapeutics using hyaluronic acid derivatives[J].J Control Release,2010,141(1):2-12.
    [17]
    Zhang Y,Huo M,Zhou J,et al.PKSolver:an add-in program for pharmacokinetic and pharmacodynamic data analysis in microsoft excel[J].Comput Methods Programs Biomed,2010,99(3):306-314.
    [18]
    Huo M,Zhang Y,Zhou J,et al.Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug[J].Int J Pharm,2010,394(1/2):162-173.
    [19]
    Stylianopoulos T.EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors[J].Ther Deliv,2013,4(4):421-423.
  • Related Articles

    [1]MU Yao, ZHAO Huimin, LIU Haochen, LIU Xiaoquan. Advances in drug development for Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(6): 816-825. DOI: 10.11665/j.issn.1000-5048.2024010202
    [2]CHANG Yuan, MAGETA Mageta Samwel, LI Nibowen, TANG Yingqi, LI Huangjuan, QIAN Chenggen. Research advances in modulating microglia for intervening in Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(5): 603-612. DOI: 10.11665/j.issn.1000-5048.2024030201
    [3]HUANG Zhihuan, LIANG Xiao, GAO Xiangdong, CHEN Song. Effects and mechanisms of SNP-9 on Parkinson''s disease cell model induced by rotenone[J]. Journal of China Pharmaceutical University, 2023, 54(2): 238-244. DOI: 10.11665/j.issn.1000-5048.2023020101
    [4]ZHA Qian, GAO Xiangdong, CHEN Song. Effects of VHL inhibitor on rotenone-induced Caenorhabditis elegans model of Parkinson′s disease[J]. Journal of China Pharmaceutical University, 2021, 52(3): 346-351. DOI: 10.11665/j.issn.1000-5048.20210312
    [5]CHEN Yingjie, GAO Xiangdong, CHEN Song. Effects and mechanisms of FGF21 on neuronal damage induced by rotenone[J]. Journal of China Pharmaceutical University, 2020, 51(6): 718-723. DOI: 10.11665/j.issn.1000-5048.20200611
    [6]CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404
    [7]YAN Ruizuo, GUO Baojian, YU Pei, ZHANG Zaijun. Effect of rasagiline on neuroprotection and behavior improvement in MPTP-induced acute mouse model of Parkinson′s disease[J]. Journal of China Pharmaceutical University, 2016, 47(5): 603-608. DOI: 10.11665/j.issn.1000-5048.20160517
    [8]Development of drug for Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2010, 41(5): 395-400.
    [9]Ptotoplast Transformation of Staphylococcal DNA[J]. Journal of China Pharmaceutical University, 1992, (4): 239-242.
    [10]EXTRACTION OF PLASMID DNA IN STAPHYLOCOCCI BY LYSOZYME-SDS METHOD[J]. Journal of China Pharmaceutical University, 1987, (1): 36-39.
  • Cited by

    Periodical cited type(10)

    1. 邹霞. 2019—2022年医院住院药房麻醉药品使用情况分析. 临床合理用药. 2025(04): 132-135 .
    2. 宋文涛,曾令高,高梓真,王佳瑜,冯旭,许向阳. 高效液相色谱法测定枸橼酸芬太尼注射液有关物质含量. 中国药业. 2024(03): 15-19 .
    3. 姚晓飞,刘玉勇,胡爽. 芬太尼类物质的危害及滥用预防. 中国药物依赖性杂志. 2024(03): 204-208 .
    4. 李国娟,杨洲,杨柳,廖彩云,杨荣极. 气相色谱—质谱用于七种新精神活性物质分析研究. 山东化工. 2023(10): 148-151 .
    5. 王斌杰,付立斌,叶昕宇,卓晓聪,姚伟宣,秦亚洲,刘猛,吴元钊. 芬太尼对斑马鱼幼鱼的心脏和神经毒性及机制. 中国药理学与毒理学杂志. 2023(10): 767-773 .
    6. 孙立敏,王松才,朱焕慧,林贤文,管旭,谭莉. 在线固相萃取-液质联用法同时检测血液样品中12种芬太尼类药物. 刑事技术. 2022(02): 121-127 .
    7. 古丽,周莉,李勇帅,冯力元,陈星同,刘祥凤,全俊先,李鹏,顾健腾. CYP3A4、CYP3A5基因多态性对患者腹腔镜术后舒芬太尼自控静脉镇痛的影响. 陆军军医大学学报. 2022(09): 930-934 .
    8. 王恒所,胡成云,李传耀,唐朝亮. 甲状腺手术患者达克罗宁辅助利多卡因表麻抑制气管插管反应的效果. 安徽卫生职业技术学院学报. 2021(02): 32-34 .
    9. 杨雪,包涵. 芬太尼类物质滥用防控难点与对策研究. 湖北警官学院学报. 2021(03): 71-81 .
    10. 杨广博. 我国毒品定义的审视与重构——以非药用类麻醉药品和精神药品及其列管为视角. 中国人民公安大学学报(社会科学版). 2021(06): 87-96 .

    Other cited types(6)

Catalog

    Article views (1881) PDF downloads (3627) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return