Advanced Search
TANG Chunlei, HUANG Wenlong, QIAN Hai. Construction and application of 3D-pharmacophore model of glucokinase agonists[J]. Journal of China Pharmaceutical University, 2015, 46(2): 181-187. DOI: 10.11665/j.issn.1000-5048.20150208
Citation: TANG Chunlei, HUANG Wenlong, QIAN Hai. Construction and application of 3D-pharmacophore model of glucokinase agonists[J]. Journal of China Pharmaceutical University, 2015, 46(2): 181-187. DOI: 10.11665/j.issn.1000-5048.20150208

Construction and application of 3D-pharmacophore model of glucokinase agonists

More Information
  • Glucokinase(GK), which plays a pivotal role in maintaining glucose equilibrium in the human body, emerged as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of glucokinase agonist inhibitors have been generated with a training set of 25 glucokinase agonists(EC50 values from 2 to 78 000 nmol/L)using Discovery studio 2. 5. The best hypothesis contained three hydrogen bond acceptors, one hydrophobic center, and three excluded volumes with a correlation coefficient of 0. 955, cost difference of 60. 5, RMSD of 0. 714. This model was validated by test set, Fischer randomization test and decoy set methods. Pharmacophore model was also utilized as a three dimentional query to screen in-house andrographolide derivative database. New potential GK agonist was obtained therewith, and the hit compound is capable for further screening assay studies. Preliminary biological evaluation suggests that this new pharmacophore model fuctions superiorly in virtual screening.
  • [1]
    Tappy L,Dussoix P,Iynedjian P,et al.Abnormal regulation of hepatic glucose output in maturity-onset diabetes of the young caused by a specific mutation of the glucokinase gene[J].Diabetes,1997,46(2):204-208.
    [2]
    Hale C,Lloyd DJ,Pellacani A,et al.Molecular targeting of the GK-GKRP pathway in diabetes[J].Expert Opin Ther Targets,2014:1-11.
    [3]
    Couzin J.Medicine-drug deals diabetes a one-two punch[J].Science,2003,301(5631):290-290.
    [4]
    Haynes NE,Corbett WL,Bizzarro FT,et al.Discovery,structure-activity relationships,pharmacokinetics,and efficacy of glucokinase activator(2R)-3-cyclopentyl-2-(4-methanesulfonylphenyl)-N-thiazol-2-yl-propionamide(RO0281675)[J].J Med Chem,2010,53(9):3618-3625.
    [5]
    Brocklehurst KJ,Payne VA,Davies RA,et al.Stimulation of hepatocyte glucose metabolism by novel small molecule glucokinase activators[J].Diabetes,2004,53(3):535-541.
    [6]
    Kamata K,Mitsuya M,Nishimura T,et al.Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase[J].Structure,2004,12(3):429-438.
    [7]
    Bebernitz GR,Beaulieu V,Dale BA,et al.Investigation of functionally liver selective glucokinase activators for the treatment of type 2 diabetes[J].J Med Chem,2009,52(19):6142-6152.
    [8]
    Bertram LS,Black D,Briner PH,et al.SAR,pharmacokinetics,safety,and efficacy of glucokinase activating 2-(4-sulfonylphenyl)-N-thiazol-2-ylacetamides:discovery of PSN-GK1[J].J Med Chem,2008,51(14):4340-4345.
    [9]
    Pfefferkorn JA,Lou J,Minich ML,et al.Pyridones as glucokinase activators:identification of a unique metabolic liability of the 4-sulfonyl-2-pyridone heterocycle[J].Bioorg Med Chem Lett,2009,19(12):3247-3252.
    [10]
    Nishimura T,Iino T,Mitsuya M,et al.Identification of novel and potent 2-amino benzamide derivatives as allosteric glucokinase activators[J].Bioorg Med Chem Lett,2009,19(5):1357-1360.
    [11]
    Ishikawa M,Nonoshita K,Ogino Y,et al.Discovery of novel 2-(pyridine-2-yl)-1H-benzimidazole derivatives as potent glucokinase activators[J].Bioorg Med Chem Lett,2009,19(15):4450-4454.
    [12]
    Pike KG,Allen JV,Caulkett PW,et al.Design of a potent,soluble glucokinase activator with increased pharmacokinetic half-life[J].Bioorg Med Chem Lett,2011,21(11):3467-3470.
    [13]
    Iino T,Sasaki Y,Bamba M,et al.Discovery and structure-activity relationships of a novel class of quinazoline glucokinase activators[J].Bioorg Med Chem Lett,2009,19(19):5531-5538.
    [14]
    Iino T,Hashimoto N,Hasegawa T,et al.Metabolic activation of N-thiazol-2-yl benzamide as glucokinase activators:impacts of glutathione trapping on covalent binding[J].Bioorg Med Chem Lett,2011,20(5):1619-1622.
    [15]
    Castelhano AL,Dong H,Fyfe MC,et al.Glucokinase-activating ureas[J].Bioorg Med Chem Lett,2005,15(5):1501-1504.
    [16]
    Litchfield J,Sharma R,Atkinson K,et al.Intrinsic electrophilicity of the 4-methylsulfonyl-2-pyridone scaffold in glucokinase activators:role of glutathione-S-transferases and in vivo quantitation of a glutathione conjugate in rats[J].Bioorg Med Chem Lett,2010,20(21):6262-6267.
    [17]
    Mitsuya M,Kamata K,Bamba M,et al.Discovery of novel 3,6-disubstituted 2-pyridinecarboxamide derivatives as GK activators[J].Bioorg Med Chem Lett,2009,19(10):2718-2721.
    [18]
    Sparks SM,Banker P,Bickett DM,et al.Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes:2.Optimization of serine and threonine ether amino acid residues[J].Bioorg Med Chem Lett,2009,19(3):981-985.
    [19]
    Bursavich MG,Parker DP,Willardsen JA,et al.2-Anilino-4-aryl-1,3-thiazole inhibitors of valosin-containing protein(VCP or p97)[J].Bioorg Med Chem Lett,2010,20(5):1677-1679.
    [20]
    Li F,Zhu Q,Zhang Y,et al.Design,synthesis,and pharmacological evaluation of N-(4-mono and 4,5-disubstituted thiazol-2-yl)-2-aryl-3-(tetrahydro-2H-pyran-4-yl)propanamides as glucokinase activators[J].Bioorg Med Chem,2010,18(11):3875-3884.
    [21]
    Zhang L,Li H,Zhu Q,et al.Benzamide derivatives as dual-action hypoglycemic agents that inhibit glycogen phosphorylase and activate glucokinase[J].Bioorg Med Chem 2009,17(20):7301-7312.
    [22]
    Iino T,Tsukahara D,Kamata K,et al.Discovery of potent and orally active 3-alkoxy-5-phenoxy-N-thiazolyl benzamides as novel allosteric glucokinase activators[J].Bioorg Med Chem,2009,17(7):2733-2743.
    [23]
    Takahashi K,Hashimoto N,Nakama C,et al.The design and optimization of a series of 2-(pyridin-2-yl)-1H-benzimidazole compounds as allosteric glucokinase activators[J].Bioorg Med Chem,2009,17(19):7042-7051.
    [24]
    John S,Thangapandian S,Sakkiah S,et al.Potent BACE-1 inhi-bitor design using pharmacophore modeling,in silico screening and molecular docking studies[J].BMC Bioinformatics,2011,12(Suppl 1):S28.
    [25]
    Zhu X,Huang D,Lan X,et al.The first pharmacophore model for potent G protein-coupled receptor 119 agonist[J].Eur J Med Chem,2011,46(7):2901-2907.
    [26]
    Chen XM,Lu T,Lu S,et al.Structure-based and shape-complemented pharmacophore modeling for the discovery of novel checkpoint kinase 1 inhibitors[J].J Mol Model,2010,16(7):1195-1204.
    [27]
    Abu Khalaf R,Abdula AM,Mubarak MS,et al.Discovery of new beta-D-glucosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening[J].J Mol Model,2011,17(3):443-464.
  • Related Articles

    [1]PAN Shiyuan, ZOU Qiaogen, HAN Mo, GAO Qianqian. Determination of imidafenacin in human plasma by UPLC-MS/MS and its bioequivalence[J]. Journal of China Pharmaceutical University, 2019, 50(5): 579-584. DOI: 10.11665/j.issn.1000-5048.20190511
    [2]LIANG Feng, LI Duo, WANG Rongbin, SHU Chang, DING Li. Pharmacokinetics and absolute bioavailability of isoschaftoside in rat by LC-MS/MS[J]. Journal of China Pharmaceutical University, 2019, 50(1): 75-80. DOI: 10.11665/j.issn.1000-5048.20190110
    [3]LI Jingjing, TAN Jingfu, YANG Jie, WANG Qiang. Pharmacokinetic study of corosolic acid in normal rats and diabetic rats by LC-MS[J]. Journal of China Pharmaceutical University, 2014, 45(1): 84-87. DOI: 10.11665/j.issn.1000-5048.20140115
    [4]MU Yanan, YANG Jin. Determination of epothilone B in human blood by LC-MS/MS and its application in phase I pharmacokinetics study[J]. Journal of China Pharmaceutical University, 2013, 44(1): 89-92. DOI: 10.11665/j.issn.1000-5048.20130115
    [5]XIAO Yuan-yuan, MA Peng-cheng, WANG Yan, REN Xin-yi, LIU Xiao-quan. Determination of 8′-hydroxy-dihydroergocryptine in human plasma by LC-MS/MS and its application to a bioequivalence evaluation[J]. Journal of China Pharmaceutical University, 2012, 43(2): 177-181.
    [6]CHU Yan, DING Li, LIU He-ying, YU Yong, ZHU He, SUN Lu-ning. Determination of potassium oxonate in human plasma and urine and its pharmacokinetics and accumulation evaluation in human[J]. Journal of China Pharmaceutical University, 2011, 42(5): 436-442.
    [7]SI Qian, CHEN Yuan-cheng, HUANG Li-hua, CHENG Yu, HE Hua, LIU Xiao-quan. Determination of nebivolol in human plasma by LC-MS/MS and study of its pharmacokinetics on the Chinese[J]. Journal of China Pharmaceutical University, 2011, 42(2): 136-140.
    [8]Pharmacokinetics and Bioequivalence of Finasteride Tablets in Healthy Subjects[J]. Journal of China Pharmaceutical University, 2003, (6): 88-91.
    [9]Determination of Descarboethoxyloratadine and Its Pharmaco-kinetics in Human Plasma by LC-MS[J]. Journal of China Pharmaceutical University, 2002, (4): 46-49.
    [10]Studies on Pharmacokinetics and Bioeqivalence of Aspirin Sustained-Release Pellets[J]. Journal of China Pharmaceutical University, 1993, (6): 334-337.
  • Cited by

    Periodical cited type(2)

    1. 宋伏洋,韩东,黄壮壮,李波,彭修娟,许刚,杨青,赵扬,王苗,李叶,朱勇乐,刘峰. 基于UPLC-Q-TOF-MS/MS技术及肝纤维化细胞模型的肝爽颗粒抗肝纤维化的药效成分筛选研究. 中南药学. 2024(05): 1157-1163 .
    2. 杨成,胡锴,韩鹏昭,宋军营,张振强,孙宁,王潘,谢治深,李中华. 天智颗粒的化学成分及入血成分定性分析. 中国药房. 2022(24): 2973-2977+2984 .

    Other cited types(3)

Catalog

    Article views (1178) PDF downloads (2564) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return