Citation: | CHEN Lu, LI Jiajie, PAN Cailong, ZHOU Danli, LIU Wentao, ZHANG Guangqin. Tetramethylpyrazine attenuates morphine tolerance through suppressing spinal microglia activation in mice[J]. Journal of China Pharmaceutical University, 2015, 46(2): 230-234. DOI: 10.11665/j.issn.1000-5048.20150216 |
[1] |
Hutchinson MR,Northcutt AL,Chao LW,et al.Minocycline suppresses morphine-induced respiratory depression,suppresses morphine-induced reward,and enhances systemic morphine-induced analgesia[J].Brain Behav Immun,2008,22(8):1248-1256.
|
[2] |
Horvath RJ, Romero-Sandoval EA, De Leo JA. Inhibition of microglial P2X4 receptors attenuates morphine tolerance,Iba1,GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED[J].Pain,2010,150(3):401-413.
|
[3] |
Johnston IN, Milligan ED, Wieseler-Frank J, et al. A role for proinflammatory cytokines and fractalkine in analgesia,tolerance,and subsequent pain facilitation induced by chronic intrathecal morphine[J].J Neurosci,2004,24(33):7353-7365.
|
[4] |
Zhou D,Chen ML,Zhang YQ,et al.Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats[J].J Neurosci,2010,30(23): 8042-8047.
|
[5] |
Wang X,Loram LC,Ramos K,et al.Morphine activates neuroinflammation in a manner parallel to endotoxin[J].Proc Natl Acad Sci U S A,2012,109(16):6325-6330.
|
[6] |
Cui Y,Chen Y,Zhi JL,et al.Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance[J].Brain Res,2006,1069(1):235-243.
|
[7] |
Wang Z,Ma W,Chabot JG,et al.Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia[J].FASEB J,2009,23(8): 2576-2586.
|
[8] |
Hutchinson MR,Coats BD,Lewis SS,et al.Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia[J].Brain Behav Immun,2008,22(8):1178-1189.
|
[9] |
Ferrini F, Trang T, Mattioli TA, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-)homeostasis[J].Nat Neurosci,2013,16(2): 183-192.
|
[10] |
Berta T,Liu T,Liu YC,et al.Acute morphine activates satellite glial cells and up-regulates IL-1beta in dorsal root ganglia in mice via matrix metalloprotease-9[J].Mol Pain,2012,8:18.
|
[11] |
Ji RR,Xu ZZ,Gao YJ.Emerging targets in neuroinflammation-driven chronic pain[J].Nat Rev Drug Discov,2014,13(7): 533-548.
|
[12] |
Liang SD,Xu CS,Zhou T,et al.Tetramethylpyrazine inhibits ATP-activated currents in rat dorsal root ganglion neurons[J].Brain Res,2005,1040(1/2):92-97.
|
[13] |
Hutchinson MR,Shavit Y,Grace PM,et al.Exploring the neuroimmunopharmacology of opioids:an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia[J].Pharmacol Rev,2011,63(3):772-810.
|
[14] |
Kawasaki,Zhang Y,Cheng JK,et al.Cytokine mechanisms of central sensitization:distinct and overlapping role of interleukin-1beta,interleukin-6,and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord[J].J Neurosci,2008,28(20):5189-5194.
|
[15] |
Benarroch EE.Central neuron-glia interactions and neuropathic pain:overview of recent concepts and clinical implications[J].Neurology,2010,75(3):273-278.
|
[16] |
Ji RR.MAP kinase and pain[J].Brain Res Rev,2009,60(1):135-148.
|
[17] |
Chen Y,Geis C Sommer.The role of mitogen-activated protein kinase(MAPK)in morphine tolerance and dependence[J].Mol Neurobiol,2009,40(2):101-107.
|
[18] |
Chen Y,Geis C Sommer.Activation of TRPV1 contributes to morphine tolerance:involvement of the mitogen-activated protein kinase signaling pathway[J].J Neurosci,2008,28(22): 5836-5845.
|
[1] | WANG Songkai, ZOU Yuchen, SUN Shipeng, YAN Zhiye, TANG Weiwei, LI Ping, LI Bin. Recent advances in mass spectrometry imaging and its application in drug research[J]. Journal of China Pharmaceutical University, 2023, 54(6): 653-661. DOI: 10.11665/j.issn.1000-5048.2023091901 |
[2] | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[3] | ZHOU Yeshu, WANG Yanmei, ZHANG Beiyuan, WU Shuaicong, YANG Lei, YIN Lifang. Research progress of inorganic nanomaterials in drug delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(4): 394-405. DOI: 10.11665/j.issn.1000-5048.20200403 |
[4] | WEI Yuanyuan, YANG Fan, TANG Jie, YU Lifang. Advances in the research of anti-tuberculosis drugs[J]. Journal of China Pharmaceutical University, 2020, 51(2): 231-239. DOI: 10.11665/j.issn.1000-5048.20200215 |
[5] | HAN Xiu, QI Xiaole, WU Zhenghong. Advances in self-assemblied DNA nanocages as drug delivery systems[J]. Journal of China Pharmaceutical University, 2017, 48(6): 663-669. DOI: 10.11665/j.issn.1000-5048.20170605 |
[6] | CHEN Xing, KANG Yang, WU Jun. Advances in biodegradable functional polymers based protein drug delivery system[J]. Journal of China Pharmaceutical University, 2017, 48(2): 142-149. DOI: 10.11665/j.issn.1000-5048.20170203 |
[7] | JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418 |
[8] | YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417 |
[9] | LIU Yanhong, ZHOU Jianping, HUO Meirong. Advances in the tumor microenvironment-responsive smart drug delivery nanosystem[J]. Journal of China Pharmaceutical University, 2016, 47(2): 125-133. DOI: 10.11665/j.issn.1000-5048.20160201 |
[10] | WANG Ruoning, LIU Congyan, ZHOU Jianping, CHEN Jian, WANG Wei. Advances in the research of lipoprotein-based nano scale drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(1): 10-16. DOI: 10.11665/j.issn.1000-5048.20140102 |