• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
YU Yinghua, XU Zhimeng, ZENG Hao, NI Rongxing, LI Ping. Advances in the study of relationship between Caspases and innate immunity[J]. Journal of China Pharmaceutical University, 2019, 50(5): 622-630. DOI: 10.11665/j.issn.1000-5048.20190517
Citation: YU Yinghua, XU Zhimeng, ZENG Hao, NI Rongxing, LI Ping. Advances in the study of relationship between Caspases and innate immunity[J]. Journal of China Pharmaceutical University, 2019, 50(5): 622-630. DOI: 10.11665/j.issn.1000-5048.20190517

Advances in the study of relationship between Caspases and innate immunity

More Information
  • Caspases are a group of structurally related cysteine proteases present in cytosol. One of their important common points is that the active sites contain cysteine and can specifically break the peptide bonds after the aspartic acid residues. Caspases are broadly divided into two groups based on their functions, including inflammatory Caspases and apoptotic Caspases. Inflammatory Caspases include Caspase-1, Caspase-4, Caspase-5, Caspase-11 and Caspase-12, which play important roles in the process of innate immune defense. Unlike inflammatory Caspases, apoptotic Caspases(2/3/6/7/8/910)initiate and execute an immunologically silent form of programmed cell death known as apoptosis. However, ongoing investigations have uncovered essential functions of Caspase-8 in the regulation of immunity in cells and organisms. Accumulated studies have shown that Caspases play important roles in the occurrence and development of various immunity-related diseases. In order to comprehensively elucidate the relationship between Caspases and innate immunity, and to provide some scientific basis and theoretical reference for the treatment of various diseases, this article reviews the regulation of activity and inflammation mechanism of innate immunity-related Caspase-1/4/5/11/8/12.
  • [1]
    Takanori K,Daniel AM.The role of inflammasomes in kidney disease[J].Nat Rev Nephrol,2019.doi: 10.1038/s41581-019-0158-z.
    [2]
    Martinon F,Burns K,Tschopp J.The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J].Molecular Cell,2002,10(2):417-426.
    [3]
    Yi YS.Caspase-11 non-canonical inflammasome:a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses[J].Immunology,2017,152(2):207-217.
    [4]
    Man SM,Kanneganti TD.Converging roles of Caspases in inflammasome activation,cell death and innate immunity[J].Nat Rev Immunol,2016,16(1):7-21.
    [5]
    Gurung P,Kanneganti TD.Novel Roles for Caspase-8 in IL-1β and Inflammasome Regulation[J].Am J Pathol,2015,85(1):17-25.
    [6]
    Chen HH,Ning XH,Jiang ZF.Caspases control antiviral innate immunity[J].Cell Mol Immunol,2017,14(9):736-747.
    [7]
    Winsor N,Krustev C,Bruce J,et al.Canonical and non-canonical inflammasomes in intestinal epithelial cells[J].Cell Microbiol,2019.doi: 10.1111/cmi.13079.
    [8]
    He WT,Wan HQ,Hu LC,et al.Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J].Cell Res,2015,25(12):1285-1298.
    [9]
    Mitchell PS,Sandstrom A,Vance RE,et al.The NLRP1 inflammasome:new mechanistic insights and unresolved mysteries[J].Curr Opin Immunol,2019,60:37-45.
    [10]
    Minkiewicz J,Vaccari JPD,Keane RW.Human astrocytes express a novel NLRP2 inflammasome[J].Glia,2013,61(7):1113-1121.
    [11]
    Mangan MSJ, Olhava EJ, Roush WR. Targeting the NLRP3 inflammasome in inflammatory diseases[J].Nat Rev Drug Disco,2018,17(8):588-606.
    [12]
    Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus[J].Nat Rev,2015,265(1):85-102.
    [13]
    Hu ZH, Zhou Q, Zhang CL, et al. Structural and biochemical basis for induced self-propagation of NLRC4[J].Science,2015,350(6259):399-404.
    [14]
    Levy M,Thaiss CA,Zeevi D,et al.Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling[J].Cell,2015,163(6):1428-1443.
    [15]
    Hara H,Seregin SS,Yang DH,et al.The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection[J].Cell,2018,175(6):1651-1664.
    [16]
    Zhu S,Ding SY,Wang PH,et al.Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells[J].Nature,2017,546(7660):667-670.
    [17]
    Park YH,Wood G,Kastner DL,et al.Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS[J].Nat Immunol,2016,17(8):914-921.
    [18]
    Xu H,Yang JL,Gao WQ,et al.Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome[J].Nature,2014,513(7517):237-241.
    [19]
    Lugrin J,Martinon F.The AIM2 inflammasome:Sensor of pathogens and cellular perturbations[J].Immunol Rev,2018,281(1):99-114.
    [20]
    Kerur N, Veettil MV, Sharma-Walia N, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection[J].Cell Host Microbe,2011,9(5):363-375.
    [21]
    Elinav E,Strowig T,Henao-Mejia J,et al.Regulation of the antimicrobial response by NLR proteins[J].Immunity,2011,34(5):665-679.
    [22]
    Cordero MD,Williams MR,Ryffel B.AMP-activated protein kinase regulation of the NLRP3 inflammasome during aging[J].Trends Endocrin Met,2018,29(1):8-17.
    [23]
    Gong T,Yang YQ,Jin TC,et al.Orchestration of NLRP3 inflammasome activation by ion fluxes[J].Trends Immunol,2018,39(5):393-406.
    [24]
    He Y,Zeng MY,YangD,et al.NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J].Nature,2016,530(7590):354-357.
    [25]
    Liu QY,Zhang DY,Hu DY,et al.The role of mitochondria in NLRP3 inflammasome activation[J].Mol Immunol,2018,469:115-124.
    [26]
    Gaidt MM,Ebert TS,Chauhan D,et al.The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3[J].Cell,2017,171(5):1110-1124.
    [27]
    He Y,Hara H,Núñez G.Mechanism and regulation of NLRP3 inflammasome activation[J].Trends Biochem Sci,2016,41(12):S0968000416301487.
    [28]
    Levinsohn JL,Newman ZL,Hellmich KA,et al.Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome[J].PLoS Pathog,2012,8(3):e002638.
    [29]
    Sandstrom A,Mitchell PS,Goers L,et al.Functional degradation:A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes[J].Science,2019,364(6435):eaau1330.
    [30]
    Chui AJ,Okondo MC,Rao SD,et al.N-terminal degradation activates the NLRP1B inflammasome[J].Science,2019,364(6435):82-85.
    [31]
    Rathinam VAK,Zhao Y,Shao F.Innate immunity to intracellular LPS[J].Nat Immunol,2019,20:527-533.
    [32]
    Liu X,Zhang ZB,Ruan JB,et al.Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J].Nature,2016,535(7610):153-158.
    [33]
    Vanaja SK,Russo AJ,Behl B,et al.Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase-11 activation[J].Cell,2016,165(5):1106-1119.
    [34]
    Kayagaki N,Stowe IB,Lee BL,et al.Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J].Nature,2015,526(7575):666-671.
    [35]
    Ding JJ,Shao F.Snapshot:the noncanonical inflammasome[J].Cell,2017,168(3):544-544.
    [36]
    Ruehl S,Broz P.Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux[J].Eur J Immunol,2015,45(10):2927-2936.
    [37]
    Zanoni I,Tan YH,Di Gioia M,et al.An endogenous Caspase-11 ligand elicits interleukin-1 release from living dendritic cells[J].Science,2016,352(6290):1232-1236.
    [38]
    Chu LH,Indramohan M,Ratsimandresy RA,et al.The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages[J].Nat Commun,2018,9(1):996.
    [39]
    DeLaney AA,Berry CT,Christian DA,et al.Caspase-8 promotes c-Rel-dependent inflammatory cytokine expression and resistance against Toxoplasma gondii[J].Proc Natl Acad Sci U S A,2019,116(24):11926-11935.
    [40]
    Orning P,Weng D,Starheim K,et al.Pathogen blockade of TAK1 triggers Caspase-8-dependent cleavage of gasdermin D and cell death[J].Science,2018,362(6418):1064-1069.
    [41]
    Sarhan J,Liu BC,Muendlein HI,et al.Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J].Proc Natl Acad Sci U S A,2018,115(46):E10888-E10897.
    [42]
    Kang TB,Yang SH,Toth B,et al.Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome[J].Immunity,2013,38(1):27-40.
    [43]
    Tummers B,Green DR.Caspase-8:regulating life and death[J].Immunol Rev,2017,77(1):76-89.
    [44]
    Maelfait J,Vercammen E,Janssens S,et al.Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by Caspase-8[J].J Exp Med,2008,205(9):1967-1973.
    [45]
    Moriwaki K,Bertin J,Gough PJ,et al.A RIPK3-Caspase 8 complex mediates atypical pro-IL-1 beta processing[J].J Immunol,2015,194(4):1938-1944.
    [46]
    Vince JE,Wong WWL,Gentle I,et al.Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation.[J].Immunity,2012,36(2):215-227.
    [47]
    Shenderov K,Riteau N,Yip R,et al.Cutting edge:endoplasmic reticulum stress licenses macrophages to produce mature IL-1β in response to TLR4 stimulation through a Caspase-8 and TRIF-dependent pathway[J].J Immunol,2014,192(5):2029-2033.
    [48]
    Bossaller L,Chiang PI,Schmidt-Lauber C,et al.Cutting edge:FAS(CD95)mediates noncanonical IL-1β and IL-18 maturation via Caspase-8 in an RIP3-independent manner[J].J Immunol,2012,189(12):5508-5512.
    [49]
    Uchiyama R,Yonehara S,Tsutsui H.Fas-mediated inflammatory response in Listeria monocytogene infection[J].J Immunol,2013,190(8):4245-4254.
    [50]
    Gringhuis SI,Kaptein TM,Wevers BA,et al.Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical Caspase-8 inflammasome[J].Nat Immunol,2012,13(3):246-254.
    [51]
    Philip NH,Dillon CP,Snyder AG,et al.Caspase-8 mediates Caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling[J].Proc Natl Acad Sci U S A,2014,111(20):7385-7390.
    [52]
    Pasparakis M,Vandenabeele P.Necroptosis and its role in inflammation[J].Nature,2015,517(7534):311-320.
    [53]
    Andrew K,Jin CK,Tae BK,et al.Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease[J].J Exp Med,2009,206(10):2161-2177.
    [54]
    Saleh M,Mathison JC,Wolinski MK,et al.Enhanced bacterial clearance and sepsis resistance in Caspase-12-deficient mice[J].Nature,2006,440(7087):1064-1068.
    [55]
    Walle LV,Fernandez DJ,Demon D,et al.Does Caspase-12 suppress inflammasome activation[J].Nature,2016,534(7605):E1-U15.
  • Related Articles

    [1]MEI Jiahao, HONG Ze, WANG Chen. Advances of drugs in targeting cGAS-STING signaling pathway[J]. Journal of China Pharmaceutical University, 2020, 51(3): 249-259. DOI: 10.11665/j.issn.1000-5048.20200301
    [2]YANG Ruocong, DUAN Feipeng, CHAO Jiahong, TIAN Pengpeng, YAN Zhiyong, LI Shaojing. Advances of microRNA activity in innate immunity[J]. Journal of China Pharmaceutical University, 2017, 48(4): 396-406. DOI: 10.11665/j.issn.1000-5048.20170403
    [3]CHEN Yingying, LI Ruiyan, CHEN Huan, ZHANG Yubin. Development and application of drugs targeting the innate and adaptive immune system in the colon[J]. Journal of China Pharmaceutical University, 2016, 47(4): 388-396. DOI: 10.11665/j.issn.1000-5048.20160402
    [4]LIU Qiu, XU Zhiliang, JIN Zhiquan, ZHOU Jun, BI Yu′an, WANG Zhenzhong, XIAO Wei. Diterpene ginkgolides meglumine injection attenuates oxygen-glucose deprivation-induced apoptosis of nerve cells via inhibition of calpain signaling pathway[J]. Journal of China Pharmaceutical University, 2015, 46(6): 707-711. DOI: 10.11665/j.issn.1000-5048.20150612
    [5]QI Cuiling, ZHOU Xinlei, YE Jie, YANG Yang, ZHANG Qianqian, LI Jiangchao, WANG Lijing. Andrographolide induces Tb cell apoptosis by activating Caspase-3/PARP[J]. Journal of China Pharmaceutical University, 2013, 44(6): 559-562. DOI: 10.11665/j.issn.1000-5048.20130614
    [6]Effect of Nerve Regeneration Factor on Caspases-3 of PC12 Cells[J]. Journal of China Pharmaceutical University, 2004, (5): 88-91.
    [7]Study on the Ciliotoxicity of Nasal Mucous of VB_( 12) Drops[J]. Journal of China Pharmaceutical University, 2002, (2): 29-31.
    [8]Studies on Nasal Absorption of Vitamin B_(12) Solution[J]. Journal of China Pharmaceutical University, 2002, (1): 19-22.
    [9]Effect of Fructus Corni on Immune System in Mice[J]. Journal of China Pharmaceutical University, 1990, (4): 226-228.
    [10]EFFECT OF DANAZOL ON THE LIVER AND IMMUNE ORGANS[J]. Journal of China Pharmaceutical University, 1986, (2): 149-151.
  • Cited by

    Periodical cited type(11)

    1. 郑立平,沈亦钰,胡春东,陈徐艰,费发明,王兢. NLRP3信号通路在胰腺癌发生发展中的作用机制研究进展. 肝胆胰外科杂志. 2024(01): 50-54 .
    2. 海乐,易必新,潘小红. 没食子酸抑制人舌鳞癌SCC-9细胞增殖、凋亡及可能机制研究. 西部医学. 2024(04): 496-500 .
    3. 吴昊,努兰·拜都拉,刘琳玉,任艳利. 没食子酸对人食管癌TE-1细胞的体外抑制作用及其机制. 中国药房. 2022(12): 1448-1454 .
    4. 文萍,李贵平,雷小琴,党嘉文. 参麦注射液对母婴分离新生鼠认知功能的影响. 中国临床药理学杂志. 2022(13): 1501-1504+1521 .
    5. 代波,蒋越,林思伟,王权胜. 精索静脉曲张性不育症的发病机制研究进展. 广西医学. 2021(10): 1235-1237+1241 .
    6. 林晨阳,许志亮,曾宾华,罗艳荣. 白杨素对舌鳞状细胞癌CAL-27细胞活力、形态及凋亡的影响. 局解手术学杂志. 2021(11): 939-942 .
    7. 胡晓玲,付蓉,苏治福. 防己黄芪汤治疗慢性心力衰竭作用机制的网络药理学探讨. 中西医结合心脑血管病杂志. 2021(22): 3844-3852 .
    8. 张云亭,刘羽茜,蒋宗蓥,董秀,张林,王靖宇,王艳杰. 参苓白术散通过TLR4/MyD88通路对Lewis肺癌小鼠肿瘤凋亡的干预作用. 中医药导报. 2021(11): 41-45+63 .
    9. 张伟,林海,常翔,杨琳,吕富荣,左瑞,田兵. 柔筋止颤片通过抑制ROS通路减轻MPP~+诱导SH-SY5Y细胞凋亡实验研究. 陕西中医. 2020(02): 160-163 .
    10. 李瑞华,韩明盛,胡鑫,马艳琴. 亚慢性砷暴露对小鼠心肌细胞凋亡的影响. 山西农业科学. 2020(06): 923-926 .
    11. 梅家豪,洪泽,王琛. 靶向cGAS-STING信号通路药物的研究进展. 中国药科大学学报. 2020(03): 249-259 . 本站查看

    Other cited types(12)

Catalog

    Article views (764) PDF downloads (1344) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return