• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIANG Tingting, WANG Wenjie, HE Guangchao, HE Guangchao, XU Yungen. Research progress of ERK small molecule inhibitors[J]. Journal of China Pharmaceutical University, 2020, 51(3): 260-269. DOI: 10.11665/j.issn.1000-5048.20200302
Citation: LIANG Tingting, WANG Wenjie, HE Guangchao, HE Guangchao, XU Yungen. Research progress of ERK small molecule inhibitors[J]. Journal of China Pharmaceutical University, 2020, 51(3): 260-269. DOI: 10.11665/j.issn.1000-5048.20200302

Research progress of ERK small molecule inhibitors

Funds: This study was supported by the Undergraduate Innovation and Entrepreneurship Training Program of China Pharmaceutical University (No. 201910316099)
More Information
  • Received Date: November 11, 2019
  • Revised Date: May 10, 2020
  • Extracellular signal-regulated kinase (ERK) is a kind of serine/threonine protein kinase. As a key downstream protein in RAS-RAF-MEK-ERK signaling pathway, its abnormal activation plays an important role in the development of tumors. Selective ERK1/2 inhibitors can block ERK signaling pathway while overcoming drug resistance caused by upstream target mutation. In this paper, the components of MAPK signaling pathway, the structure and functions of ERK and the role of ERK signaling pathway in tumor development are summarized, and some representative ERK inhibitors in clinical or preclinical studies are emphasized.
  • [1]
    . Bioorg Med Chem Lett, 2015, 25(2): 192-197.
    [2]
    Wang X, Zhang PH. Advances in research on the modulation of autophagy by Ras/Raf/MEK/ERK signaling pathway[J]. J China Pharm Univ(中国药科大学学报), 2017, 48(1): 110-116.
    [3]
    Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges[J]. Nat Rev Drug Discov, 2014, 13(12): 928-942.
    [4]
    Yu ZT, Ye SQ, Hu GY, et al. The RAF-MEK-ERK pathway: targeting ERK to overcome obstacles to effective cancer therapy[J]. Future Med Chem, 2015, 7(3): 269-289.
    [5]
    Uehling DE, Harris PA. Recent progress on MAP kinase pathway inhibitors[J]. Bioorg Med Chem Lett, 2015, 25(19): 4047-4056.
    [6]
    Menon MB, Gaestel M. TPL2 meets p38MAPK: emergence of a novel positive feedback loop in inflammation[J]. Biochem J, 2016, 473(19): 2995-2999.
    [7]
    Lei ZY, van Mil A, Brandt MM, et al. MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway[J]. J Cell Mol Med, 2015, 19(8): 1994-2005.
    [8]
    Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update[J]. Arch Toxicol, 2015, 89(6): 867-882.
    [9]
    Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives[J]. Eur J Med Chem, 2016, 109: 314-341.
    [10]
    Caunt CJ, Sale MJ, Smith PD, et al. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road[J]. Nat Rev Cancer, 2015, 15(10): 577-592.
    [11]
    Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease[J]. Cell, 2017, 170(1): 17-33.
    [12]
    Roskoski RJr. A historical overview of protein kinases and their targeted small molecule inhibitors[J]. Pharmacol Res, 2015, 100: 1-23.
    [13]
    Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling[J]. Nat Rev Mol Cell Biol, 2015, 16(5): 281-298.
    [14]
    An S, Yang Y, Ward R, et al. Raf-interactome in tuning the complexity and diversity of Raf function[J]. FEBS J, 2015, 282(1): 32-53.
    [15]
    Cseh B, Doma E, Baccarini M. “RAF” neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway[J]. FEBS Lett, 2014, 588(15): 2398-2406.
    [16]
    Okumura S, J?nne PA. Molecular pathways: the basis for rational combination using MEK inhibitors in KRAS-mutant cancers[J]. Clin Cancer Res, 2014, 20(16): 4193-4199.
    [17]
    Taylor SS, Kornev AP. Protein kinases: evolution of dynamic regulatory proteins[J]. Trends Biochem Sci, 2011, 36(2): 65-77.
    [18]
    Buscà R, Christen R, Lovern M, et al. ERK1 and ERK2 present functional redundancy in tetrapods despite higher evolution rate of ERK1[J]. BMC Evol Biol, 2015, 15: 179.
    [19]
    Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway[J]. Pharmacol Ther, 2018, 187: 45-60.
    [20]
    Roskoski RJr. ERK1/2 MAP kinases: structure, function, and regulation[J]. Pharmacol Res, 2012, 66(2): 105-143.
    [21]
    Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 map kinases: specific roles or functional redundancy[J]? Front Cell Dev Biol, 2016, 4: 53.
    [22]
    Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions[J]. Growth Factors, 2006, 24(1): 21-44.
    [23]
    Houles T, Roux PP. Defining the role of the RSK isoforms in cancer[J]. Semin Cancer Biol, 2018, 48: 53-61.
    [24]
    Casalvieri KA, Matheson CJ, Backos DS, et al. Selective targeting of RSK isoforms in cancer[J]. Trends Cancer, 2017, 3(4): 302-312.
    [25]
    Asano E, Maeda M, Hasegawa H, et al. Role of palladin phosphorylation by extracellular signal-regulated kinase in cell migration[J]. PLoS One, 2011, 6(12): e29338.
    [26]
    Plotnikov A, Zehorai E, Procaccia S, et al. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation[J]. Biochim Biophys Acta, 2011, 1813(9): 1619-1633.
    [27]
    Hobbs GA, der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance[J]. J Cell Sci, 2016, 129(7): 1287-1292.
    [28]
    Holderfield M, Deuker MM, McCormick F, et al. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond[J]. Nat Rev Cancer, 2014, 14(7): 455--467.
    [29]
    Jetschke K, Viehweger H, Freesmeyer M, et al. Primary pineal malignant melanoma with B-Raf V600E mutation: a case report and brief review of the literature[J]. Acta Neurochir (Wien), 2015, 157(7): 1267-1270.
    [30]
    Sogabe S, Togashi Y, Kato H, et al. MEK inhibitor for gastric cancer with MEK1 gene mutations[J]. Mol Cancer Ther, 2014, 13(12): 3098-3106.
    [31]
    Nikolaev SI, Rimoldi D, Iseli C, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma[J]. Nat Genet, 2011, 44(2): 133-139.
    [32]
    Murugan AK, Dong JL, Xie JW, et al. MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas[J]. Cell Cycle, 2009, 8(13): 2122-2124.
    [33]
    Arcila ME, Drilon A, Sylvester BE, et al. MAP2K1 (MEK1) mutations define a distinct subset of lung adenocarcinoma associated with smoking[J]. Clin Cancer Res, 2015, 21(8): 1935-1943.
    [34]
    Roskoski RJr. Targeting ERK1/2 protein-serine/threonine kinases in human cancers[J]. Pharmacol Res, 2019, 142: 151-168.
    [35]
    Jaiswal BS, Durinck S, Stawiski EW, et al. ERK mutations and amplification confer resistance to ERK-inhibitor therapy[J]. Clin Cancer Res, 2018, 24(16): 4044-4055.
    [36]
    Qin JZ, Xin H, Nickoloff BJ. Specifically targeting ERK1 or ERK2 kills melanoma cells[J]. J Transl Med, 2012, 10: 15.
    [37]
    Hatzivassiliou G, Liu B, O''''Brien C, et al. ERK inhibition overcomes acquired resistance to MEK inhibitors[J]. Mol Cancer Ther, 2012, 11(5): 1143-1154.
    [38]
    Blake JF, Gaudino JJ, De Meese J, et al. Discovery of 5, 6, 7, 8-tetrahydropyrido[3, 4-d]pyrimidine inhibitors of Erk2[J]. Bioorg Med Chem Lett, 2014, 24(12): 2635-2639.
    [39]
    Ren L, Grina J, Moreno D, et al. Discovery of highly potent, selective, and efficacious small molecule inhibitors of ERK1/2[J]. J Med Chem, 2015, 58(4): 1976-1991.
    [40]
    Blake JF, Burkard M, Chan J, et al. Discovery of (S)-1-(1-(4-Chloro-3-fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1H-pyrazol-5-yl)amino)pyrimidin-4-yl)pyridin-2(1H)-one (GDC-0994), an extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor in early clinical development[J]. J Med Chem, 2016, 59(12): 5650-5660.
    [41]
    Germann UA, Furey BF, Markland W, et al. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib)[J]. Mol Cancer Ther, 2017, 16(11): 2351-2363.
    [42]
    Germann U, Furey B, Roix J, et al. The selective ERK inhibitor BVD-523 is active in models of MAPK pathway-dependent cancers, including those with intrinsic and acquired drug resistance[J]. Cancer Res, 2015, 75: 4693.
    [43]
    U.S. National Library of Meidcine. A study of LYA3214996 administered alone or in combination with other agents in participants with advanced/metastatic cancer[EB/OL]. (2019-09-17)[2019-03-14].https://clinicaltrials.gov/ct2/show/NCT02857270.
    [44]
    Chaikuad A, Tacconi EM, Zimmer J, et al. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics[J]. Nat Chem Biol, 2014, 10(10): 853-860.
    [45]
    Boga SB, Deng YQ, Zhu L, et al. MK-8353: discovery of an orally bioavailable dual mechanism ERK inhibitor for oncology[J]. ACS Med Chem Lett, 2018, 9(7): 761-767.
    [46]
    U.S. National Library of Meidcine. Study of MK-8353 in combination with pembrolizumab (MK-3475) in participants with advanced malignancies (MK-8353-013)[EB/OL]. (2019-07-232019-03-14].https://clinicaltrials.gov/ct2/show/ CT02972034.
    [47]
    U.S. National Library of Meidcine. Study of MK-8353 + Selumetinib in Advanced/Metastatic Solid Tumors (MK-8353-014)[EB/OL]. (2019-07-22)[2019-03-14]. https://clinicaltrials.gov/ct2/show/ NCT03745 989.
    [48]
    U.S. National Library of Meidcine. Safety and PK Study of CC-90003 in Relapsed/Refractory Solid Tumors[EB/OL]. (2016-08-22)[2019-03-14]. https://clinical trials.gov/ct2/show/NCT02313012.
    [49]
    Aronchik I, Dai YM, Labenski M, et al. Efficacy of a covalent ERK1/2 inhibitor, CC-90003, in KRAS-mutant cancer models reveals novel mechanisms of response and resistance[J]. Mol Cancer Res, 2019, 17(2): 642-654.
    [50]
    Ohori M, Kinoshita T, Okubo M, et al. Identification of a selective ERK inhibitor and s tructural determination of the inhibitor-ERK2 complex[J]. Biochem Biophys Res Commun, 2005, 336(1): 357-363.
    [51]
    Ohori M, Takeuchi M, Maruki R, et al. FR180204, a novel and selective inhibitor of extracellular signal-regulated kinase, ameliorates collagen-induced arthritis in mice[J]. Naunyn Schmiedebergs Arch Pharmacol, 2007, 374(4): 311-316.
    [52]
    Sreekanth GP, Chuncharunee A, Sirimontaporn A, et al. Role of ERK1/2 signaling in dengue virus-induced liver injury[J]. Virus Res, 2014, 188: 15-26.
    [53]
    Aronov AM, Baker C, Bemis GW, et al. Flipped out: structure-guided design of selective pyrazolylpyrrole ERK inhibitors[J]. J Med Chem, 2007, 50(6): 1280-1287.
    [54]
    Aronov AM, Tang Q, Martinez-Botella G, et al. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control[J]. J Med Chem, 2009, 52(20): 6362-6368.
    [55]
    Krepler C, Xiao M, Sproesser K, et al. Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies[J]. Clin Cancer Res, 2016, 22(7): 1592-1602.
    [56]
    Liu B, Fu LL, Zhang C, et al. Computational design, chemical synthesis, and biological evaluation of a novel ERK inhibitor (BL-EI001) with apoptosis-inducing mechanisms in breast cancer[J]. Oncotarget, 2015, 6(9): 6762-6775.
    [57]
    Ji DZ, Zhang LZ, Zhu QH, et al. Discovery of potent, orally bioavailable ERK1/2 inhibitors with isoindolin-1-one structure by structure-based drug design[J]. Eur J Med Chem, 2019, 164: 334-341.
  • Related Articles

    [1]XU Yuantao, WANG Jundong, GUAN Li, ZHAO Ning, LI Weize. Synthesis and antidiabetic activity evaluation of benzopyrimidine derivatives[J]. Journal of China Pharmaceutical University, 2023, 54(5): 569-576. DOI: 10.11665/j.issn.1000-5048.2023041701
    [2]MEI Yinliu, WU Jie. Application of nanoparticles in wound healing of diabetes[J]. Journal of China Pharmaceutical University, 2022, 53(1): 25-31. DOI: 10.11665/j.issn.1000-5048.20220104
    [3]TAO Yingjun, WU Jie, LIU Chang. Application of proteomics in diabetes and its complications[J]. Journal of China Pharmaceutical University, 2020, 51(3): 368-373. DOI: 10.11665/j.issn.1000-5048.20200315
    [4]LI Yongrong, CHENG Tao, WANG Yongsheng, LI Qin, GAO Bo, HE Yun, BAI Yu. Effect of extract of selenium-enriched Astragalus membranaceus on insulin resistance in streptozotocin-induced diabetic rats[J]. Journal of China Pharmaceutical University, 2018, 49(6): 739-745. DOI: 10.11665/j.issn.1000-5048.20180616
    [5]XU Zhimeng, ZHU Jingjing, JIANG Zhenzhou, LOU Fengchang, WANG Tao. Hypoglycemic effects of terpenes from Fructus Corni on db/db diabetic mice[J]. Journal of China Pharmaceutical University, 2016, 47(3): 337-341. DOI: 10.11665/j.issn.1000-5048.20160315
    [6]HU Mengyue, LIU Can, ZHANG Mian, HU Nan, LIU Li, LIU Xiaodong. Alteration of cytochrome P450s activity under diabetic conditions and its impact on the development of diabetes mellitus[J]. Journal of China Pharmaceutical University, 2014, 45(2): 153-160. DOI: 10.11665/j.issn.1000-5048.20140204
    [7]WANG Xin-ting, ZHANG Mian, GUO Hai-fang, LIU Can, HU Nan, LIU Li, LIU Xiao-dong. Effect and mechanism of atorvastatin on blood glucose of mild diabetic rats[J]. Journal of China Pharmaceutical University, 2012, 43(5): 453-459.
    [8]Effects of Melatonin on the Immune Functions of Diabetic Rats Combined with Injury-induced Stress[J]. Journal of China Pharmaceutical University, 2004, (4): 71-74.
    [9]PREVENTION AND TREATMENT OF ALLOXAN-INDUCED DIABETES IN MICE BY POLYSACCHARIDES ISOLATED RESPECTIVELY FROM BOTH TREMELLA FUCIFORMIS AND AURICULARIA A URICULA[J]. Journal of China Pharmaceutical University, 1989, (3): 181-183.
    [10]PREVENTION AND TREATMENT OF ALLOXAN-INDUCED DIABETES IN MICE BY POLYSACCHARIDES FROM SPORE OF TREMELLA FUCIFORMIS BERK[J]. Journal of China Pharmaceutical University, 1988, (4): 303-304.
  • Cited by

    Periodical cited type(7)

    1. 刘艳,温田田,孙野,陈庆山,张丽莉,匡海学,杨炳友. 白鲜皮化学成分研究. 中成药. 2025(03): 812-821 .
    2. 陈禹竹,徐晓敏,刘树民,卢芳. 白鲜皮及其有效成分的药理作用研究进展. 药物评价研究. 2024(02): 409-418 .
    3. 刘新月,陈乐乐,孙鹏,展照双,王加锋. 白鲜皮化学成分、药理作用和毒性研究进展及质量标志物预测分析. 中国新药杂志. 2023(08): 799-805 .
    4. 牛晨冬,郭丽娜,张金玲,卢宜然,王琳琳,李宗锴. 白鲜属植物化学成分与药理作用研究进展. 中成药. 2022(04): 1231-1238 .
    5. 葛翎,路露,周谦,张秋生,蔡波,黄晓德,张峰伦,钱雪,李海涛,陈斌,曹鹏. 马齿苋醇提物体外生物学活性测定. 中国野生植物资源. 2021(04): 8-14+21 .
    6. 梁郭智,孙淑英. 白鲜研究进展. 时珍国医国药. 2020(02): 408-411 .
    7. 胡玉恒,孙捷,杨洁,王晓静. 3-(4′-苯甲酰基氨基-苯基)-香豆素衍生物的合成及体外降血糖活性. 中国药科大学学报. 2019(02): 168-174 . 本站查看

    Other cited types(4)

Catalog

    Article views (564) PDF downloads (1099) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return