• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102
Citation: XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102

Advances in research on tumor immunotherapy and its drug development

Funds: This study was supported by the National Natural Science Foundation of China (No.81872823) and the Double First-Class Project of China Pharmaceutical University (No.CPU2018PZQ13)
More Information
  • Received Date: June 24, 2020
  • Revised Date: July 09, 2020
  • The progress of molecular biology and tumor biology has greatly changed the mode of cancer treatment. A large number of scientific studies have revealed the mechanism of tumor immune evasion, and a variety of new types of tumor immunotherapy have emerged, which has become another effective treatment of cancer after surgery, radiotherapy, chemotherapy and targeted therapy. This paper introduces the mechanism of tumor cell immune evasion, and focuses on the design principle, biological drugs and the latest research progress of immunotherapy, such as cytokine immunotherapies, therapeutic monoclonal antibody immunotherapy, PD-1/PD-L1 therapy, CAR-T therapy, tumor vaccine, oncolytic virus and so on. At the same time, the advantages and disadvantages of various immunotherapies are compared to provide reference for drug research and development in tumor immunotherapy.
  • [1]
    . Cell, 2019, 176(3): 677.
    [2]
    Pham T, Roth S, Kong J, et al. An update on immunotherapy for solid tumors: a review[J]. Ann Surg Oncol, 2018, 25(11): 3404-3412.
    [3]
    Chang CH, Qiu J, O''Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 1229-1241.
    [4]
    Klener P, Jr., Otahal P, Lateckova L, et al. Immunotherapy approaches in cancer treatment[J]. Curr Pharm Biotechnol, 2015, 16(9): 771-781.
    [5]
    Liu YH, Zang XY, Wang JC, et al. Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy[J]. Biomedecine Pharmacother, 2019, 120: 109437.
    [6]
    Weiner GJ. Building better monoclonal antibody-based therapeutics[J]. Nat Rev Cancer, 2015, 15(6): 361-370.
    [7]
    Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives[J]. Drug Des Devel Ther, 2018, 12: 195-208.
    [8]
    Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline[J]. Nat Rev Drug Discov, 2019, 18(8): 585-608.
    [9]
    Lindau D, Gielen P, Kroesen M, et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells[J]. Immunology, 2013, 138(2): 105-115.
    [10]
    Qin H, Lerman B, Sakamaki I, et al. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice[J]. Nat Med, 2014, 20(6): 676-681.
    [11]
    Liu C, Workman CJ, Vignali DA. Targeting regulatory T cells in tumors[J]. Febs J, 2016, 283(14): 2731-2748.
    [12]
    de Coa?a YP, Wolodarski M, Poschke I, et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma[J]. Oncotarget, 2017, 8(13): 21539-21553.
    [13]
    Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition[J]. Am J Clin Oncol, 2016, 39(1): 98-106.
    [14]
    Abdin SM, Zaher DM, Arafa EA, et al. Tackling cancer resistance by immunotherapy: updated clinical impact and safety of PD-1/PD-L1 inhibitors[J]. Cancers (Basel), 2018, 10(2): E32.
    [15]
    Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proc Natl Acad Sci USA, 2002, 99(19): 12293-12297.
    [16]
    Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy[J]. Blood, 2018, 131(1): 58-67.
    [17]
    Syn NL, Teng MWL, Mok TSK, et al. De-novo and acquired resistance to immune checkpoint targeting[J]. Lancet Oncol, 2017, 18(12): e731-e741.
    [18]
    Dong HD, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.
    [19]
    Sul J,Blumenthal GM,Jiang XP, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1[J]. Oncologist, 2016, 21(5): 643-650.
    [20]
    Ning YM, Suzman D, Maher VE, et al. FDA approval summary: atezolizumab for the treatment of patients with progressive advanced urothelial carcinoma after platinum-containing chemotherapy[J]. Oncologist, 2017, 22(6): 743-749.
    [21]
    Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review[J]. Eur J Cancer, 2016, 54: 139-148.
    [22]
    Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 439-448.
    [23]
    Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J]. Lancet Oncol, 2019, 20(1): 31-42.
    [24]
    Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy[J]. Biol Blood Marrow Transplant, 2019, 25(4): e123-e127.
    [25]
    Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma[J]. N Engl J Med, 2017, 377(26): 2531-2544.
    [26]
    Ji TJ, Lang JY, Ning B, et al. Enhanced natural killer cell immunotherapy by rationally assembling fc fragments of antibodies onto tumor membranes[J]. Adv Mater, 2019, 31(6): e1804395.
    [27]
    Chiu J, Ernst DM, Keating A. Acquired natural killer cell dysfunction in the tumor microenvironment of classic Hodgkin lymphoma[J]. Front Immunol, 2018, 9: 267.
    [28]
    Ibrahim EC, Guerra N, Lacombe MJ, et al. Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma[J]. Cancer Res, 2001, 61(18): 6838-6845.
    [29]
    Hu Y, Tian ZG, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy[J]. Acta Pharmacol Sin, 2018, 39(2): 167-176.
    [30]
    Han JF, Chu JH, Keung Chan W, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells[J]. Sci Rep, 2015, 5: 11483.
    [31]
    Burger MC, Zhang C, Harter PN, et al. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy[J]. Front Immunol, 2019, 10: 2683.
    [32]
    Li Y, Hermanson DL, Moriarity BS, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell Stem Cell, 2018, 23(2): 181-192.e5.
    [33]
    Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors[J]. N Engl J Med, 2020, 382(6): 545-553.
    [34]
    Hu Y, Tian ZG, Zhang C. Natural killer cell-based immunotherapy for cancer: advances and prospects[J]. Engineering, 2019, 5(1): 106-114.
    [35]
    Song Q, Zhang CD, Wu XH. Therapeutic cancer vaccines: From initial findings to prospects[J]. Immunol Lett, 2018, 196: 11-21.
    [36]
    Bowen WS, Svrivastava AK, Batra L, et al. Current challenges for cancer vaccine adjuvant development[J]. Expert Rev Vaccines, 2018, 17(3): 207-215.
    [37]
    van der Burg SH, Arens R, Ossendorp F, et al. Vaccines for established cancer: overcoming the challenges posed by immune evasion[J]. Nat Rev Cancer, 2016, 16(4): 219-233.
    [38]
    Aldous AR, Dong JZ. Personalized neoantigen vaccines: a new approach to cancer immunotherapy[J]. Bioorg Med Chem, 2018, 26(10): 2842-2849.
    [39]
    Chen FJ, Zou ZY, Du J, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors[J]. J Clin Invest, 2019, 129(5): 2056-2070.
    [40]
    Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma[J]. Nature, 2019, 565(7738): 240-245.
    [41]
    Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239.
    [42]
    Zang R, Jiang T, Zeng TZ, et al. Advances of combined immunotherapy in tumor[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(4): 383-391.
    [43]
    Sahin U, ?Türeci. Personalized vaccines for cancer immunotherapy[J]. Science, 2018, 359(6382): 1355-1360.
    [44]
    Hennessy ML, Bommareddy PK, Boland G, et al. Oncolytic immunotherapy[J]. Surg Oncol Clin N Am, 2019, 28(3): 419-430.
    [45]
    Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(8): 498-513.
    [46]
    Breitbach CJ, Bell JC, Hwang TH, et al. The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594)[J]. Oncolytic Virother, 2015, 4: 25-31.
    [47]
    Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs[J]. Nat Rev Drug Discov, 2015, 14(9): 642-662.
    [48]
    Rosewell Shaw A, Suzuki M. Oncolytic viruses partner with T-cell therapy for solid tumor treatment[J]. Front Immunol, 2018, 9: 2103.
    [49]
    Russell L, Peng KW, Russell SJ, et al. Oncolytic viruses: priming time for cancer immunotherapy[J]. BioDrugs, 2019, 33(5): 485-501.
    [50]
    Tsun A, Miao XN, Wang CM, et al. Oncolytic immunotherapy for treatment of cancer[J]. Adv Exp Med Biol, 2016, 909: 241-283.
    [51]
    Yl?sm?ki E, Cerullo V. Design and application of oncolytic viruses for cancer immunotherapy[J]. Curr Opin Biotechnol, 2020, 65: 25-36.
    [52]
    Qin S, Xu LP, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1): 155.
    [53]
    Xin X, Pei X, Yang X, et al. Rod-shaped active drug particles enable efficient and safe gene delivery[J]. Adv Sci (Weinh), 2017, 4(11): 1700324.
    [54]
    Xin XF, Teng C, Du XQ, et al. Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route[J]. Theranostics, 2018, 8(13): 3474-3489.
    [55]
    Xin XF, Du XQ, Xiao QQ, et al. Drug nanorod-mediated intracellular delivery of microRNA-101 for self-sensitization via autophagy inhibition[J]. Nano-Micro Lett, 2019, 11(1): 1-16.
    [56]
    Ma LY, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449): 162-168.
  • Related Articles

    [1]MU Yao, ZHAO Huimin, LIU Haochen, LIU Xiaoquan. Advances in drug development for Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(6): 816-825. DOI: 10.11665/j.issn.1000-5048.2024010202
    [2]WANG Shihao, LIU Lifeng, DING Yang, LI Suxin. Research progress of pH-responsive drug delivery systems in cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 522-529. DOI: 10.11665/j.issn.1000-5048.2024011902
    [3]LOU Fangning, ZHENG Mingyue, CHEN Kaixian, ZHANG Sulin. Research progress of cGAS-STING signaling pathway modulators in immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(1): 15-25. DOI: 10.11665/j.issn.1000-5048.2023112402
    [4]YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003
    [5]Gao Zhonghao. 新型药物递送系统技术在药物研发中的应用和展望[J]. Journal of China Pharmaceutical University, 2023, 54(1): 1-4. DOI: 10.11665/j.issn.1000-5048.2023030303
    [6]YAO Zheng, LI Zihan, GAO Liming, HU Xing, CHEN Yan, PAN Wenqi, LI Qian. Advances of research on CAR-T cell immunotherapy for solid tumors[J]. Journal of China Pharmaceutical University, 2021, 52(4): 496-504. DOI: 10.11665/j.issn.1000-5048.20210413
    [7]ZHANG Rui, JIANG Tao, ZENG Tianzhu, YAO Wenbing, GAO Xiangdong, TIAN Hong. Advances of combined immunotherapy in tumor[J]. Journal of China Pharmaceutical University, 2018, 49(4): 383-391. DOI: 10.11665/j.issn.1000-5048.20180401
    [8]XU Jingwen, JIANG Huici, CHEN Ximin, DING Guipeng. Advances in antibody drugs for treatment of melanoma[J]. Journal of China Pharmaceutical University, 2014, 45(3): 259-266. DOI: 10.11665/j.issn.1000-5048.20140302
    [9]WANG Juan, LIAO Hong. Advances in drug research and development through directed differentiation of stem cells[J]. Journal of China Pharmaceutical University, 2011, 42(3): 193-197.
    [10]Using Advanced eCDM Technology to Improve Clinical Trial Efficiency[J]. Journal of China Pharmaceutical University, 2004, (4): 1-4.

Catalog

    Article views (1777) PDF downloads (1652) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return