• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
YAN Pei, YE Lianbao, CHEN Weiqiang. Progress in therapeutic targets and development of drugs against chronic obstructive pulmonary disease[J]. Journal of China Pharmaceutical University, 2021, 52(2): 144-155. DOI: 10.11665/j.issn.1000-5048.20210202
Citation: YAN Pei, YE Lianbao, CHEN Weiqiang. Progress in therapeutic targets and development of drugs against chronic obstructive pulmonary disease[J]. Journal of China Pharmaceutical University, 2021, 52(2): 144-155. DOI: 10.11665/j.issn.1000-5048.20210202

Progress in therapeutic targets and development of drugs against chronic obstructive pulmonary disease

Funds: This study was supported by Guangdong Provincial Department of Education New Generation Information Technology Key Field Special Project (No.2020ZDZX3026)
More Information
  • Received Date: April 30, 2020
  • Revised Date: March 06, 2021
  • Chronic obstructive pulmonary disease (COPD), characterized by airflow constraint, is a chronic respiratory disease closely related to the chronic inflammatory response of the airways and lungs to harmful gases or toxic particles, which may further develop into pulmonary heart disease and respiratory failure.At present the complex pathogenesis of COPD is considered to be the result of the interaction of a variety of genetic and environmental factors, and there is stiu no safe and effective drug for the treatment. This article reviews the pathogenesis of COPD from such aspects as oxidative stress, protease/antiprotease imbalance, immune mechanism, cell aging and cell repair mechanism, cell necrosis and autophagy,withan introduction to the potential targets and clinical research progress of related drugs, including β2 receptor agonists, muscarinic antagonists, theophylline and its derivatives, drugs targeting inflammatory mediators, protease inhibitors, kinase inhibitors, PED4 inhibitors, glandular glycoside receptor modulators,and antioxidants, which may provide some reference for the development of new drugs for COPD.
  • [1]
    . Respirology, 2016, 21(1): 14-23.
    [2]
    Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease [J]. Lancet, 2004, 364(9435): 709-721.
    [3]
    Peiffer G, Underner M, Perriot J. Les effets respiratoires du tabagisme (The respiratory effects of smoking)[J]. Rev Pneumol Clin, 2018, 74(3): 133-144.
    [4]
    Toledo-Pons N, Cosío BG, Velasco MD. Chronic obstructive pulmonary disease in non-smokers [J]. Arch Bronconeumol, 2017, 53(2): 45-46.
    [5]
    Corhay JL, Frusch N, Louis R. Interrelations génétique-environnement: la broncho-pneumopathie chronique obstructive [COPD: genetics and environmental interactions] [J]. Rev Med Liege, 2012, 67(5-6): 292-297.
    [6]
    Raghavan D, Varkey A, Bartter T. Chronic obstructive pulmonary disease: the impact of gender [J]. Curr Opin Pulm Med, 2017, 23(2): 117-123.
    [7]
    Cortopassi F, Gurung P, Pinto-Plata V. Chronic obstructive pulmonary disease in elderly patients [J]. Clin Geriatr Med, 2017, 33(4): 539-552.
    [8]
    Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease [J]. Lancet, 2015, 385(9971): 899-909.
    [9]
    McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms [J]. J Clin Med, 2017, 6(2): 21.
    [10]
    Stockley RA. Neutrophils and protease/antiprotease imbalance [J]. Am J Respir Crit Care Med, 1999, 160(5 Pt 2): S49-52.
    [11]
    Pauwels NS, Bracke KR, Dupont LL, et al. Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette smoke-induced pulmonary inflammation and COPD [J]. Eur Respir J, 2011, 38(5): 1019-1028.
    [12]
    Qiu SL, Zhang H, Tang QY, et al. Neutrophil extracellular traps induced by cigarette smoke activate plasmacytoid dendritic cells [J]. Thorax, 2017, 72(12): 1084-1093.
    [13]
    Jiang B, Guan Y, Shen HJ, et al. Akt/PKB signaling regulates cigarette smoke-induced pulmonary epithelial-mesenchymal transition [J]. Lung Cancer, 2018, 122: 44-53.
    [14]
    Eapen MS, Sharma P, Gaikwad AV, et al. Epithelial-mesenchymal transition is driven by transcriptional and post transcriptional modulations in COPD: implications for disease progression and new therapeutics [J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 1603-1610.
    [15]
    Barnes PJ. Senescence in COPD and its comorbidities [J]. Annu Rev Physiol, 2017, 79: 517-539.
    [16]
    Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts [J]. Thorax, 2015, 70(5): 482-489.
    [17]
    Ghosh M, Miller YE, Nakachi I, et al. Exhaustion of airway basal progenitor cells in early and established chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med, 2018, 197(7): 885-896.
    [18]
    Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018 [J]. Cell Death Differ, 2018, 25(3): 486-541.
    [19]
    Pouwels SD, Zijlstra GJ, van der Toorn M, et al. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice [J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(4): L377-386.
    [20]
    Wang Y, Zhou JS, Xu XC, et al. Endoplasmic reticulum chaperone GRP78 mediates cigarette smoke-induced necroptosis and injury in bronchial epithelium [J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 571-581.
    [21]
    Leermakers PA, AMWJSchols, Kneppers AEM, et al. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD) [J]. Sci Rep, 2018, 8(1): 15007.
    [22]
    Billington CK, Penn RB, Hall IP. β (2) agonists [J]. Handb Exp Pharmacol, 2017, 237: 23-40.
    [23]
    Williams DM, Rubin BK. Clinical pharmacology of bronchodilator medications [J]. Respir Care, 2018, 63(6): 641-654.
    [24]
    Yamada M, Ichinose M. The cholinergic pathways in inflammation: a potential pharmacotherapeutic target for COPD [J]. Front Pharmacol, 2018, 9: 1426.
    [25]
    Vogelmeier CF, Bateman ED, Pallante J, et al. Efficacy and safety of once-daily QVA149 compared with twice-daily salmeterol-fluticasone in patients with chronic obstructive pulmonary disease (ILLUMINATE): a randomised, double-blind, parallel group study [J]. Lancet Respir Med, 2013, 1(1): 51-60.
    [26]
    Barnes PJ. Theophylline [J]. Am J Respir Crit Care Med, 2013, 188(8): 901-906.
    [27]
    Lazaar AL, Sweeney LE, MacDonald AJ, et al. A novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans [J]. Br J Clin Pharmacol, 2011, 72(2): 282-293.
    [28]
    Churg A, Wang R, Wang X, et al. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs [J]. Thorax, 2007, 62(8): 706-713.
    [29]
    Barnes PJ. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease [J]. Pharmacol Rev, 2016, 68(3): 788-815.
    [30]
    Doukas J, Eide L, Stebbins K, et al. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease [J]. J Pharmacol Exp Ther, 2009, 328(3): 758-765.
    [31]
    Erra M, Taltavull J, Gréco A, et al. Discovery of a potent, selective, and orally available PI3Kδ inhibitor for the treatment of inflammatory diseases [J]. ACS Med Chem Lett, 2016, 8(1): 118-123.
    [32]
    Fenwick PS, Macedo P, Kilty IC, et al. Effect of JAK inhibitors on release of CXCL9, CXCL10 and CXCL11 from human airway epithelial cells [J]. PLoS One, 2015, 10(6): e0128757.
    [33]
    Hegab AE, Sakamoto T, Nomura A, et al. Niflumic acid and AG-1478 reduce cigarette smoke-induced mucin synthesis: the role of hCLCA1 [J]. Chest, 2007, 131(4): 1149-1156.
    [34]
    Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease [J]. Cochrane Database Syst Rev, 2017, 9(9): Cd002309.
    [35]
    Watz H, Mistry SJ, Lazaar AL. Safety and tolerability of the inhaled phosphodiesterase 4 inhibitor GSK256066 in moderate COPD [J]. Pulm Pharmacol Ther, 2013, 26(5): 588-595.
    [36]
    Yang Q, Wu FR, Wang JN, et al. Nox4 in renal diseases: an update [J]. Free Radic Biol Med, 2018, 124: 466-472.
    [37]
    Laleu B, Gaggini F, Orchard M, et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis [J]. J Med Chem, 2010, 53(21): 7715-7730.
    [38]
    Soubhye J, Chikh Alard I, Aldib I, et al. Discovery of novel potent reversible and irreversible myeloperoxidase inhibitors using virtual screening procedure [J]. J Med Chem, 2017, 60(15): 6563-6586.
  • Related Articles

    [1]ZHAO Xiujuan, YANG Hengli, WU Jinye, ZHENG Xiaoqi, ZHANG Yaoping, LIN Yuping, HU Chunyan. Synthesis and anti-inflammatory activity of three series of coumarin-based derivatives[J]. Journal of China Pharmaceutical University, 2025, 56(1): 40-48. DOI: 10.11665/j.issn.1000-5048.2024072101
    [2]ZHU Hong, WEI Xiaopeng, JIN Meihua, QIN Nan. Synthesis and inhibition of NO production activities of 1, 6-O, O-diacylbritannilactone derivatives[J]. Journal of China Pharmaceutical University, 2017, 48(4): 440-444. DOI: 10.11665/j.issn.1000-5048.20170408
    [3]MOU Yi, CHEN Tong, HUANG Zhangjian, LAI Yisheng, PENG Sixun, JI Hui, ZHANG Yihua. Design, synthesis and anti-inflammatory evaluation of CDDO-Me ester prodrugs[J]. Journal of China Pharmaceutical University, 2016, 47(6): 661-665. DOI: 10.11665/j.issn.1000-5048.20160605
    [4]XU Guijun, LI Zhijun, WANG Qi, TAN Jiejun, SHI Guoshan, QI Wei, LI Di, WANG Youpeng. Isolation and identification of anti-inflammatory constituents from Houttuynia cordata[J]. Journal of China Pharmaceutical University, 2016, 47(3): 294-298. DOI: 10.11665/j.issn.1000-5048.20160308
    [5]WU Mingming, FANG Lei, GOU Shaohua, CHEN Li. 以2-甲基-2-取代苯氧基丙酸为离去基团的铂(Ⅱ)配合物的合成、表征及细胞毒活性[J]. Journal of China Pharmaceutical University, 2013, 44(4): 303-306. DOI: 10.11665/j.issn.1000-5048.20130403
    [6]HUANG Wen-xing, LAI Yi-sheng, ZHANG Yi-hua, WANG Zhen-guo, ZHANG Zhi-hao, MA Lin, JI Hui. Synthesis and anti-inflammatory activity of p-(sulfamyl)benzylidene-linked heterocyclic ketone derivatives[J]. Journal of China Pharmaceutical University, 2009, 40(6): 497-502.
    [7]AO Gui-zhen, ZHENG Li-ling, XU Guang-lin, LI Jing. Synthesis and anti-inflammatory activity of α-aryl-3,5-dimethoxyphenylpropenamides[J]. Journal of China Pharmaceutical University, 2009, 40(4): 302-305.
    [8]Synthesis and anti-inflammatory activities of aryl alkyl acid NSAIDs tetraacetylated glucoside derivatives[J]. Journal of China Pharmaceutical University, 2009, 40(1): 26-30.
    [9]Synthesis and anti-inflammatory activities of imidazo[1,2-a] pyrimidine derivatives[J]. Journal of China Pharmaceutical University, 2009, 40(1): 16-20.
    [10]Synthesis and Anti-inflammatory Activity of Nitric Oxidedonating α-Substituted p-(Methanesulfonyl)phenylpropenoic Acid Esters[J]. Journal of China Pharmaceutical University, 2004, (3): 6-10.
  • Cited by

    Periodical cited type(3)

    1. 王苗苗,秦嘉泽,郭佳琪,于天成. 杓唇石斛开花特性与繁育系统研究. 浙江农业学报. 2025(01): 103-114 .
    2. 关丽,赵惠茹,高璐,唐潇潇,李伟泽,赵宁,冯锋. 4-羟基-3, 5, 2′-三甲氧基联苄的合成及抑制血管新生活性研究. 化学与生物工程. 2022(10): 16-19 .
    3. 刘鹏飞,范蓓,刘湘丹,杨洋,卢聪,佟立涛,孙晶,王凤忠. 铁皮石斛枫斗加工前后差异成分比较. 核农学报. 2022(12): 2412-2418 .

    Other cited types(1)

Catalog

    Article views (944) PDF downloads (1405) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return