• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SHAO Shishuai, DUAN Shukang, TIAN Hong, YAO Wenbing, GAO Xiangdong. Design and antitumor activity of programmed cell death ligand 1 epitope peptide vaccine[J]. Journal of China Pharmaceutical University, 2023, 54(2): 245-254. DOI: 10.11665/j.issn.1000-5048.2023022803
Citation: SHAO Shishuai, DUAN Shukang, TIAN Hong, YAO Wenbing, GAO Xiangdong. Design and antitumor activity of programmed cell death ligand 1 epitope peptide vaccine[J]. Journal of China Pharmaceutical University, 2023, 54(2): 245-254. DOI: 10.11665/j.issn.1000-5048.2023022803

Design and antitumor activity of programmed cell death ligand 1 epitope peptide vaccine

Funds: This study was supported by the National Natural Science Foundation of China (No.82073754, No.81973222); and the Key Research and Development Program of Xinjiang Uygur Autonomous Region (No.2020B03003)
More Information
  • Received Date: February 27, 2023
  • Revised Date: April 02, 2023
  • Several programmed cell death protein 1 (PD-1) or its ligand (PD-L1) immune checkpoint blocking antibodies are available for clinical treatment, but only some patients show clinical response, so an alternative strategy for tumor immunotherapy is needed.A therapeutic tumor vaccine targeting PD-L1 is a meaningful attempt.In this study, we designed an epitope peptide vaccine targeting PD-L1, and then screened the immunogenic PD-L1 epitope peptide based on the humanized immune system (HIS) mouse model and further investigated its anti-tumor activity.The results show that the designed and screened PD-L1-B1 epitope peptide vaccine not only successfully induced PD-L1-specific humoral and cellular immunity, but also exhibit anti-tumor activity.In addition, immunotherapy increased T-lymphocyte infiltration of tumors and reshaped the tumor immunosuppressive microenvironment.In conclusion, PD-L1-B1 epitope peptide vaccine exhibits potent anti-tumor activity and may be an effective alternative immunotherapeutic strategy for patients insensitive to PD-1/PD-L1 blockade.
  • [1]
    Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade[J]. Cell, 2022, 185(3): 576.
    [2]
    Zhou F, Qiao M, Zhou CC. The cutting-edge progress of immune-checkpoint blockade in lung cancer[J]. Cell Mol Immunol, 2021, 18(2): 279-293.
    [3]
    André; T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218.
    [4]
    Janjigian YY, Shitara K, Moehler M, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial[J]. Lancet, 2021, 398(10294): 27-40.
    [5]
    Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in non-small cell lung cancer: facts and hopes[J]. Clin Cancer Res, 2019, 25(15): 4592-4602.
    [6]
    Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance[J]. Nat Immunol, 2022, 23(5): 660-670.
    [7]
    Lei QY, Wang D, Sun K, et al. Resistance mechanisms of anti-PD-1/PD-L1 therapy in solid tumors[J]. Front Cell Dev Biol, 2020, 8: 672.
    [8]
    Tian H, Kang YL, Song XD, et al. PD-L1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD-1/PD-L1 pathway and activating PD-L1-specific immune responses[J]. Cancer Lett, 2020, 476: 170-182.
    [9]
    Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration[J]. Theranostics, 2021, 11(11): 5365-5386.
    [10]
    Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11): 662-680.
    [11]
    McAuliffe J, Chan HF, Noblecourt L, et al. Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy[J]. J Immunother Cancer, 2021, 9(9): e003218.
    [12]
    Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18(4): 215-229.
    [13]
    Ott PA, Hu-Lieskovan S, Chmielowski B, et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer[J]. Cell, 2020, 183(2): 347-362.e24.
    [14]
    Parkhurst MR, Robbins PF, Tran E, et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers[J]. Cancer Discov, 2019, 9(8): 1022-1035.
    [15]
    Geuijen C, Tacken P, Wang LC, et al. A human CD137 × PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade[J]. Nat Commun, 2021, 12(1): 4445.
    [16]
    Munir S, Lundsager MT, J?rgensen MA, et al. Inflammation induced PD-L1-specific T cells[J]. Cell Stress, 2019, 3(10): 319-327.
    [17]
    Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PD-L1 in tumour immune evasion[J]. Nat Rev Immunol, 2020, 20(4): 209-215.
    [18]
    Guo LL, Overholser J, Good AJ, et al. Preclinical studies of a novel human PD-1 B-Cell peptide cancer vaccine PD-1-Vaxx from BALB/c mice to beagle dogs and to non-human primates (Cynomolgus monkeys)[J]. Front Oncol, 2022, 12: 826566.
    [19]
    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355.
    [20]
    Yu W, Jiang N, Ebert PJ, et al. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes[J]. Immunity, 2015, 42(5): 929-941.
    [21]
    Tian H, He Y, Song XD, et al. Nitrated T helper cell epitopes enhance the immunogenicity of HER2 vaccine and induce anti-tumor immunity[J]. Cancer Lett, 2018, 430: 79–87.
    [22]
    Su S, Zou ZY, Chen FJ, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer[J]. Oncoimmunology, 2017, 6(1): e1249558.
    [23]
    Nelde A, Rammensee HG, Walz JS. The peptide vaccine of the future[J]. Mol Cell Proteomics, 2021, 20: 100022.
    [24]
    Liao P, Wang WM, Wang WC, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J]. Cancer Cell, 2022, 40(4): 365-378.e6.
    [25]
    Gao Y, Yang JJ, Cai YX, et al. IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling[J]. Int J Cancer, 2018, 143(4): 931-943.
    [26]
    Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy[J]. Nat Rev Immunol, 2018, 18(10): 648-659.
    [27]
    Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition[J]. Clin Cancer Res, 2016, 22(8): 1865-1874.
  • Related Articles

    [1]XIA Yuan, JIANG Qingling, WANG Xiaoting, LI Minjing, ZHENG Qiusheng, LI Defang. Norcantharidin induces apoptosis through autophagosome accumulation in breast cancer MDA-MB-231 cells[J]. Journal of China Pharmaceutical University, 2023, 54(6): 757-768. DOI: 10.11665/j.issn.1000-5048.2023033004
    [2]PAN Kemeng, CHEN Song, GAO Xiangdong, YAO Wenbing. Effects and mechanisms of microRNA-23b on neuronal apoptosis induced by Aβ25-35[J]. Journal of China Pharmaceutical University, 2021, 52(4): 480-486. DOI: 10.11665/j.issn.1000-5048.20210411
    [3]WANG Yan, PING Fengfeng, ZHOU Danli, CHEN Yanhua, LING Jingjing. Masitinib alleviated cerebral ischemia/reperfusion injury by inhibiting autophagy and apoptosis[J]. Journal of China Pharmaceutical University, 2021, 52(2): 227-235. DOI: 10.11665/j.issn.1000-5048.20210212
    [4]LI Jing, LUO Fuling, WU Shengwang, WAN Jingyuan, ZHAO Hengguang. Hair regeneration in mice was promoted by 3-methyladenine through inhibiting autophagy flux[J]. Journal of China Pharmaceutical University, 2019, 50(4): 468-474. DOI: 10.11665/j.issn.1000-5048.20190412
    [5]WANG Jingjing, TIAN Chenguang, ZHANG Jinying, ZHANG Jijia, WU Zhaoke. Oroxylin A ameliorates isoproterenol-induced heart failure model in rats through promoting myocardial autophagy[J]. Journal of China Pharmaceutical University, 2018, 49(6): 731-738. DOI: 10.11665/j.issn.1000-5048.20180615
    [6]MA Jingfan, ZHANG Yan, YE Ganping, WEI Qiliang, QIU Longxin. Seneciphylline induced the autophagy of cervical cancer cells via MEK/ERK1/2 regulation[J]. Journal of China Pharmaceutical University, 2018, 49(5): 616-623. DOI: 10.11665/j.issn.1000-5048.20180515
    [7]YANG Rui, ZHU Yi, WANG Yin, MA Wenqi, WANG Xin, HAN Xiqiong, LIU Naifeng. Recent progress in autophagy and vascular calcification[J]. Journal of China Pharmaceutical University, 2018, 49(4): 401-406. DOI: 10.11665/j.issn.1000-5048.20180403
    [8]LIU Jing, HUANG Yanwei, ZHOU Bo, SONG Qingqing. Effect of R-(+)-lipoic acid on growth, proliferation and related mechanism in human HepG2 cells[J]. Journal of China Pharmaceutical University, 2017, 48(3): 348-354. DOI: 10.11665/j.issn.1000-5048.20170316
    [9]WANG Xue, ZHANG Pinghu. Advances in research on the modulation of autophagy by Ras/Raf/MEK/ERK signaling pathway[J]. Journal of China Pharmaceutical University, 2017, 48(1): 110-116. DOI: 10.11665/j.issn.1000-5048.20170117
    [10]ZHAO Hengguang, LUO Fuling. Rapamycin reverse lipopolysaccharide-induced acute lung injury through activating autophagy flux[J]. Journal of China Pharmaceutical University, 2015, 46(5): 605-609. DOI: 10.11665/j.issn.1000-5048.20150515
  • Cited by

    Periodical cited type(1)

    1. 阮浩澜,许姿敏,陈琪. 亚精胺的抗衰机制及在人体皮肤中的应用前景. 中国当代医药. 2023(35): 21-24 .

    Other cited types(0)

Catalog

    Article views (193) PDF downloads (374) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return