Citation: | HOU Kai, LI Ping, ZHANG Jinlian, et al. Blood coagulation factor XI: new strategy of targeted anticoagulant therapy[J]. J China Pharm Univ, 2024, 55(5): 708 − 714. DOI: 10.11665/j.issn.1000-5048.2023050101 |
Thrombotic disease remains a leading cause of morbidity and mortality worldwide. Despite breakthroughs in anticoagulant therapy over the past decade, traditional vitamin K antagonists have been replaced by direct oral anticoagulants (DOACs) that selectively target coagulation factor Xa or IIa. However, for the growing population with concomitant diseases, there is still a lack of satisfactory treatment options. Coagulation-targeted therapy is a challenging task because it interferes with the delicate balance between procoagulant and anticoagulant activities. Epidemiological and animal studies have identified factor XI as a potential target for anticoagulation, because factor XI deficiency or inhibition can prevent thrombosis and is associated with little or no bleeding. Based on the concept of contact hemostasis, this review describes the basic principles of the development of coagulation factor XI inhibitors, elaborates on the pharmacological characteristics of existing factor XI inhibitors, and summarizes the current situation of clinical trial research, to provide some insight for the development of new anticoagulant drugs and clinical anticoagulant treatment.
[1] |
Braunwald E. Inhibitors of factor XI: game changers of anti-thrombotic therapy[J]? Eur Heart J, 2023, 44 (12): 1018-1019.
|
[2] |
Milling TJ Jr, Ziebell CM. A review of oral anticoagulants, old and new, in major bleeding and the need for urgent surgery[J]. Trends Cardiovasc Med, 2020, 30(2): 86-90. doi: 10.1016/j.tcm.2019.03.004
|
[3] |
Zhang L, Li Z, Ye XR, et al. Mechanisms of thrombosis and research progress on targeted antithrombotic drugs[J]. Drug Discov Today, 2021, 26(10): 2282-2302. doi: 10.1016/j.drudis.2021.04.023
|
[4] |
Poenou G, Dumitru DT, Lafaie L, et al. Factor xi inhibition for the prevention of venous thromboembolism: an update on current evidence and future perspectives[J]. Vasc Health Risk Manag, 2022, 18: 359-373. doi: 10.2147/VHRM.S331614
|
[5] |
Jansson M, Själander S, Sjögren V, et al. Direct comparisons of effectiveness and safety of treatment with Apixaban, Dabigatran and Rivaroxaban in atrial fibrillation[J]. Thromb Res, 2020, 185: 135-141. doi: 10.1016/j.thromres.2019.11.010
|
[6] |
Agnelli G, Buller HR, Cohen A, et al. Oral apixaban for the treatment of acute venous thromboembolism[J]. N Engl J Med, 2013, 369(9): 799-808. doi: 10.1056/NEJMoa1302507
|
[7] |
Büller HR, Décousus H, Grosso MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism[J]. N Engl J Med, 2013, 369(15): 1406-1415. doi: 10.1056/NEJMoa1306638
|
[8] |
Naito R, Miyauchi K, Yasuda S, et al. Rivaroxaban monotherapy vs combination therapy with antiplatelets on total thrombotic and bleeding events in atrial fibrillation with stable coronary artery disease: a post hoc secondary analysis of the AFIRE trial[J]. JAMA Cardiol, 2022, 7(8): 787-794. doi: 10.1001/jamacardio.2022.1561
|
[9] |
Chan N, Sobieraj-Teague M, Eikelboom JW. Direct oral anticoagulants: evidence and unresolved issues[J]. Lancet, 2020, 396(10264): 1767-1776. doi: 10.1016/S0140-6736(20)32439-9
|
[10] |
Roberti R, Iannone LF, Palleria C, et al. Direct oral anticoagulants: from randomized clinical trials to real-world clinical practice[J]. Front Pharmacol, 2021, 12: 684638. doi: 10.3389/fphar.2021.684638
|
[11] |
Lau WCY, Torre CO, Man KKC, et al. Comparative effectiveness and safety between apixaban, dabigatran, edoxaban, and rivaroxaban among patients with atrial fibrillation: a multinational population-based cohort study[J]. Ann Intern Med, 2022, 175(11): 1515-1524. doi: 10.7326/M22-0511
|
[12] |
Aloysius MM, Perisetti A, Goyal H, et al. Direct-acting oral anticoagulants versus warfarin in relation to risk of gastrointestinal bleeding: a systematic review and meta-analysis of randomized controlled trials[J]. Ann Gastroenterol, 2021, 34(5): 651-659.
|
[13] |
Dunois C. Laboratory monitoring of direct oral anticoagulants (DOACs)[J]. Biomedicines, 2021, 9(5): 445. doi: 10.3390/biomedicines9050445
|
[14] |
Presume J, Ferreira J, Ribeiras R, et al. Achieving higher efficacy without compromising safety with factor XI inhibitors versus low molecular weight heparin for the prevention of venous thromboembolism in major orthopedic surgery-Systematic review and meta-analysis[J]. J Thromb Haemost, 2022, 20(12): 2930-2938. doi: 10.1111/jth.15890
|
[15] |
Grover SP, Mackman N. Intrinsic pathway of coagulation and thrombosis[J]. Arterioscler Thromb Vasc Biol, 2019, 39(3): 331-338. doi: 10.1161/ATVBAHA.118.312130
|
[16] |
Tillman BF, Gruber A, McCarty OJT, et al. Plasma contact factors as therapeutic targets[J]. Blood Rev, 2018, 32(6): 433-448. doi: 10.1016/j.blre.2018.04.001
|
[17] |
Yau JW, Liao P, Fredenburgh JC, et al. Selective depletion of factor XI or factor XII with antisense oligonucleotides attenuates catheter thrombosis in rabbits[J]. Blood, 2014, 123(13): 2102-2107. doi: 10.1182/blood-2013-12-540872
|
[18] |
Shatzel JJ, DeLoughery EP, Lorentz CU, et al. The contact activation system as a potential therapeutic target in patients with COVID-19[J]. Res Pract Thromb Haemost, 2020, 4(4): 500-505. doi: 10.1002/rth2.12349
|
[19] |
Walsh M, Bethune C, Smyth A, et al. Phase 2 study of the factor XI antisense inhibitor IONIS-FXIR x in patients with ESRD[J]. Kidney Int Rep, 2021, 7(2): 200-209.
|
[20] |
Willmann S, Marostica E, Snelder N, et al. PK/PD modeling of FXI antisense oligonucleotides to bridge the dose-FXI activity relation from healthy volunteers to end-stage renal disease patients[J]. CPT Pharmacometrics Syst Pharmacol, 2021, 10(8): 890-901. doi: 10.1002/psp4.12663
|
[21] |
Perera V, Wang ZQ, Luettgen J, et al. First-in-human study of milvexian, an oral, direct, small molecule factor XIa inhibitor[J]. Clin Transl Sci, 2022, 15(2): 330-342. doi: 10.1111/cts.13148
|
[22] |
Thomas D, Kanefendt F, Schwers S, et al. First evaluation of the safety, pharmacokinetics, and pharmacodynamics of BAY2433334, a small molecule targeting coagulation factor XIa[J]. J Thromb Haemost, 2021, 19(10): 2407-2416. doi: 10.1111/jth.15439
|
[23] |
Beale D, Dennison J, Boyce M, et al. ONO-7684 a novel oral FXIa inhibitor: safety, tolerability, pharmacokinetics and pharmacodynamics in a first-in-human study[J]. Br J Clin Pharmacol, 2021, 87(8): 3177-3189. doi: 10.1111/bcp.14732
|
[24] |
Ma TT, Dong YL, Huang L, et al. SHR2285, the first selectively oral FXIa inhibitor in China: safety, tolerability, pharmacokinetics and pharmacodynamics combined with aspirin, clopidogrel or ticagrelor[J]. Front Pharmacol, 2022, 13: 1027627. doi: 10.3389/fphar.2022.1027627
|
[25] |
Greco A, Laudani C, Spagnolo M, et al. Pharmacology and clinical development of factor XI inhibitors[J]. Circulation, 2023, 147(11): 897-913. doi: 10.1161/CIRCULATIONAHA.122.062353
|
[26] |
Liu M, Zaman K, Fortenberry YM. Overview of the therapeutic potential of aptamers targeting coagulation factors[J]. Int J Mol Sci, 2021, 22(8): 3897. doi: 10.3390/ijms22083897
|
[27] |
Sachetto ATA, Mackman N. Modulation of the mammalian coagulation system by venoms and other proteins from snakes, arthropods, nematodes and insects[J]. Thromb Res, 2019, 178: 145-154. doi: 10.1016/j.thromres.2019.04.019
|
[28] |
Weitz JI, Bauersachs R, Becker B, et al. Effect of osocimab in preventing venous thromboembolism among patients undergoing knee arthroplasty: the FOXTROT randomized clinical trial[J]. JAMA, 2020, 323(2): 130-139. doi: 10.1001/jama.2019.20687
|
[29] |
Yi BA, Freedholm D, Widener N, et al. Pharmacokinetics and pharmacodynamics of Abelacimab (MAA868), a novel dual inhibitor of Factor XI and Factor XIa[J]. J Thromb Haemost, 2022, 20(2): 307-315. doi: 10.1111/jth.15577
|
[30] |
Lorentz CU, Tucker EI, Verbout NG, et al. The contact activation inhibitor AB023 in heparin-free hemodialysis: results of a randomized phase 2 clinical trial[J]. Blood, 2021, 138(22): 2173-2184. doi: 10.1182/blood.2021011725
|
[31] |
Chen R, Guan XD, Hu P, et al. First-In-human study to assess the safety, pharmacokinetics, and pharmacodynamics of SHR2285, a small-molecule factor XIa inhibitor in healthy subjects[J]. Front Pharmacol, 2022, 13: 821363. doi: 10.3389/fphar.2022.821363
|
[32] |
Büller HR, Bethune C, Bhanot S, et al. Factor XI antisense oligonucleotide for prevention of venous thrombosis[J]. N Engl J Med, 2015, 372(3): 232-240. doi: 10.1056/NEJMoa1405760
|
[33] |
Perera V, Abelian G, Li DS, et al. Single-dose pharmacokinetics of milvexian in participants with mild or moderate hepatic impairment compared with healthy participants[J]. Clin Pharmacokinet, 2022, 61(6): 857-867. doi: 10.1007/s40262-022-01110-9
|
[34] |
Weitz JI, Strony J, Ageno W, et al. Milvexian for the prevention of venous thromboembolism[J]. N Engl J Med, 2021, 385(23): 2161-2172. doi: 10.1056/NEJMoa2113194
|
[35] |
Verhamme P, Yi BA, Segers A, et al. Abelacimab for prevention of venous thromboembolism[J]. N Engl J Med, 2021, 385(7): 609-617. doi: 10.1056/NEJMoa2105872
|
[36] |
Visser M, Heitmeier S, Ten Cate H, et al. Role of factor XIa and plasma kallikrein in arterial and venous thrombosis[J]. Thromb Haemost, 2020, 120(6): 883-993. doi: 10.1055/s-0040-1710013
|