• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
MA Wenxuan, HAN Yuhong, LIN Ang, et al. A comparative analysis of vaccine immunity induced by heterologous booster with Ad5-nCoV via different routes of administration[J]. J China Pharm Univ, 2024, 55(1): 137 − 146. DOI: 10.11665/j.issn.1000-5048.2024011701
Citation: MA Wenxuan, HAN Yuhong, LIN Ang, et al. A comparative analysis of vaccine immunity induced by heterologous booster with Ad5-nCoV via different routes of administration[J]. J China Pharm Univ, 2024, 55(1): 137 − 146. DOI: 10.11665/j.issn.1000-5048.2024011701

A comparative analysis of vaccine immunity induced by heterologous booster with Ad5-nCoV via different routes of administration

Funds: This study was supported by the National Natural Science Foundation of China (No. 32200764) and the Natural Science Foundation of Jiangsu Province (No. BK20221031)
More Information
  • Received Date: January 16, 2024
  • Available Online: March 05, 2024
  • Heterologous boost COVID-19 vaccination can solved the problem of decreased efficacy caused by single dose of vaccine. Heterologous booster with adenoviral-vectored COVID-19 vaccine (Ad5-nCoV) following primary immunization with inactivated COVID-19 vaccines is a widely-used vaccination strategy in clinic, while different routes of Ad5-nCoV administration exist and pose a question which route could be more optimal. In this study, we comprehensively evaluated and compared the vaccine immunity induced in mice immunized according to three different vaccination regimens: “3×phosphate buffered solution(3× PBS)”, “2×inactivated vaccine + 1×inactivated vaccine (3×INA)”, “2×inactivated vaccine + 1×Ad5-nCoV (intramuscular)[2×INA+Ad5(im)]”and“2×inactivated vaccine + 1×Ad5-nCoV (intranasal)[2×INA+Ad5(in)]”. We found that heterologous booster with Ad5-nCoV, irrespective of the route of administration, induced significantly higher levels of anti-Spike IgG and subclasses (IgG1and IgG2c), Spike-specific T cells, class-switched Spike+ memory B cells (MBCs) than homologous booster with 3rd dose of inactivated COVID-19 vaccine. Of note, compared with the intramuscular given, intranasal given of Ad5-nCoV as a booster dose clearly induced higher levels of serum and bronchoalveolar bavage fluid anti-spike immunoglobulin A, and moreover, induced stronger infiltration of major innate effector cells like neutrophils, natural killer cells and dendritic cells into the lung tissue, which suggested that mucosal vaccine responses are generated upon intranasal booster with Ad5-nCoV. Altogether, our study analyzed the vaccine immunity induced by different COVID-19 vaccines administered using different regimens, which may guide the clinical use of other types of prophylactic vaccines aiming to mount improved vaccine responses.

  • [1]
    Li MC, Wang H, Tian LL, et al. COVID-19 vaccine development: milestones, lessons and prospects[J]. Signal Transduct Target Ther, 2022, 7(1): 146. doi: 10.1038/s41392-022-00996-y
    [2]
    Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments[J]. Nat Rev Immunol, 2021, 21(2): 83-100. doi: 10.1038/s41577-020-00479-7
    [3]
    Mekonnen D, Mengist HM, Jin TC. SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways[J]. Expert Rev Vaccines, 2022, 21(1): 69-81. doi: 10.1080/14760584.2021.1991794
    [4]
    Fang EY, Liu XH, Li M, et al. Advances in COVID-19 mRNA vaccine development[J]. Signal Transduct Target Ther, 2022, 7(1): 94. doi: 10.1038/s41392-022-00950-y
    [5]
    Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine[J]. N Engl J Med, 2020, 383(27): 2603-2615. doi: 10.1056/NEJMoa2034577
    [6]
    Al Kaabi N, Zhang YT, Xia SL, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial[J]. JAMA, 2021, 326(1): 35-45. doi: 10.1001/jama.2021.8565
    [7]
    Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26. COV2. S vaccine against covid-19[J]. N Engl J Med, 2021, 384(23): 2187-2201. doi: 10.1056/NEJMoa2101544
    [8]
    Levin EG, Lustig Y, Cohen C, et al. Waning immune humoral response to BNT162b2 covid-19 vaccine over 6 months[J]. N Engl J Med, 2021, 385(24): e84. doi: 10.1056/NEJMoa2114583
    [9]
    Yadav PD, Kumar S. Global emergence of SARS-CoV-2 variants: new foresight needed for improved vaccine efficacy[J]. Lancet Infect Dis, 2022, 22(3): 298-299. doi: 10.1016/S1473-3099(21)00687-3
    [10]
    Dejnirattisai W, Shaw RH, Supasa P, et al. Reduced neutralisation of SARS-CoV-2 omicron B. 1.1. 529 variant by post-immunisation serum[J]. Lancet, 2022, 399(10321): 234-236. doi: 10.1016/S0140-6736(21)02844-0
    [11]
    Collie S, Champion J, Moultrie H, et al. Effectiveness of BNT162b2 vaccine against Omicron variant in South Africa[J]. N Engl J Med, 2022, 386(5): 494-496. doi: 10.1056/NEJMc2119270
    [12]
    Afkhami S, D’Agostino MR, Zhang AL, et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2[J]. Cell, 2022, 185(5): 896-915. e19.
    [13]
    Munro APS, Janani L, Cornelius V, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial[J]. Lancet, 2021, 398(10318): 2258-2276. doi: 10.1016/S0140-6736(21)02717-3
    [14]
    Li JX, Hou LH, Guo XL, et al. Heterologous AD5-nCOV plus CoronaVac versus homologous CoronaVac vaccination: a randomized phase 4 trial[J]. Nat Med, 2022, 28(2): 401-409. doi: 10.1038/s41591-021-01677-z
    [15]
    Li JX, Wu SP, Guo XL, et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open-label, single-centre trial[J]. Lancet Respir Med, 2022, 10(8): 739-748. doi: 10.1016/S2213-2600(22)00087-X
    [16]
    Zhang HY, Jia YY, Ji Y, et al. Inactivated vaccines against SARS-CoV-2: neutralizing antibody titers in vaccine recipients[J]. Front Microbiol, 2022, 13: 816778. doi: 10.3389/fmicb.2022.816778
    [17]
    Phelps M, Balazs AB. Contribution to HIV prevention and treatment by antibody-mediated effector function and advances in broadly neutralizing antibody delivery by vectored immunoprophylaxis[J]. Front Immunol, 2021, 12: 734304. doi: 10.3389/fimmu.2021.734304
    [18]
    Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses[J]. Nature, 2021, 590(7844): E17. doi: 10.1038/s41586-020-03102-w
  • Related Articles

    [1]WU Yaqi, LI Meng, XING Haonan, CHEN Daquan, ZHENG Aiping. Research progress of nasal mucosal immunization vaccine against COVID-19[J]. Journal of China Pharmaceutical University, 2022, 53(6): 643-650. DOI: 10.11665/j.issn.1000-5048.20220602
    [2]CHEN Hongmei, KANG Yanliang, LIU Li, YAO Wenbing, TIAN Hong. Effects of different immunogenic amino acids in PD-L1 vaccine on the differentiation of T cell subsets[J]. Journal of China Pharmaceutical University, 2020, 51(3): 349-356. DOI: 10.11665/j.issn.1000-5048.20200313
    [3]JIANG Liangliang, JIANG Tao, LUO Jianhua, YAO Wenbing, TIAN Hong. A novel human immune system mice model for assessing the immunogenicity of cancer vaccines[J]. Journal of China Pharmaceutical University, 2019, 50(6): 734-742. DOI: 10.11665/j.issn.1000-5048.20190615
    [4]HE Yu, TIAN Hong, DAI Xin, YAO Wenbing, GAO Xiangdong. Immunogenicity of HER2 vaccine containing p-nitrophenylalanine[J]. Journal of China Pharmaceutical University, 2018, 49(3): 369-375. DOI: 10.11665/j.issn.1000-5048.20180317
    [5]HAO Tianyun, GAO Yuan, WEI Yuanfeng, ZHANG Jianjun, QIAN Shuai. Strategies in transdermal and mucosal drug delivery systems:role of lyotropic liquid crystal[J]. Journal of China Pharmaceutical University, 2018, 49(2): 173-180. DOI: 10.11665/j.issn.1000-5048.20180206
    [6]NING Hongyu, JIANG Tao, ZHANG Rui, HE Yu, YAO Wenbing, TIAN Hong. Effects of immunogenic HER2 on the differentiation of T-cell in mouse[J]. Journal of China Pharmaceutical University, 2018, 49(1): 102-108. DOI: 10.11665/j.issn.1000-5048.20180115
    [7]WU Jie, LIU Xiaorui, YANG Xue, HOU Jing, XU Maolei, SHEN Lili, HUANG Dongcheng, LIU Kunfeng. Hypoglycemic effect of Lactococcus lactis vaccine containing HSP65-6P277 on streptozotocin-induced type 1 diabetic mice[J]. Journal of China Pharmaceutical University, 2014, 45(1): 106-110. DOI: 10.11665/j.issn.1000-5048.20140120
    [8]LU Wei-dong, LIN Yi-ju, DAI Yun-bo, YANG Xuan-xiang, MA Bo. Preparation and immunogenicity of influenza vaccine lyophilized liposomes[J]. Journal of China Pharmaceutical University, 2009, 40(3): 218-221.
    [10]Study on the Immunogenity of Antigen and Antigenic Epitope Displayed by Phage Display of pIII and pVIII[J]. Journal of China Pharmaceutical University, 2004, (6): 100-105.
  • Cited by

    Periodical cited type(10)

    1. 邹霞. 2019—2022年医院住院药房麻醉药品使用情况分析. 临床合理用药. 2025(04): 132-135 .
    2. 宋文涛,曾令高,高梓真,王佳瑜,冯旭,许向阳. 高效液相色谱法测定枸橼酸芬太尼注射液有关物质含量. 中国药业. 2024(03): 15-19 .
    3. 姚晓飞,刘玉勇,胡爽. 芬太尼类物质的危害及滥用预防. 中国药物依赖性杂志. 2024(03): 204-208 .
    4. 李国娟,杨洲,杨柳,廖彩云,杨荣极. 气相色谱—质谱用于七种新精神活性物质分析研究. 山东化工. 2023(10): 148-151 .
    5. 王斌杰,付立斌,叶昕宇,卓晓聪,姚伟宣,秦亚洲,刘猛,吴元钊. 芬太尼对斑马鱼幼鱼的心脏和神经毒性及机制. 中国药理学与毒理学杂志. 2023(10): 767-773 .
    6. 孙立敏,王松才,朱焕慧,林贤文,管旭,谭莉. 在线固相萃取-液质联用法同时检测血液样品中12种芬太尼类药物. 刑事技术. 2022(02): 121-127 .
    7. 古丽,周莉,李勇帅,冯力元,陈星同,刘祥凤,全俊先,李鹏,顾健腾. CYP3A4、CYP3A5基因多态性对患者腹腔镜术后舒芬太尼自控静脉镇痛的影响. 陆军军医大学学报. 2022(09): 930-934 .
    8. 王恒所,胡成云,李传耀,唐朝亮. 甲状腺手术患者达克罗宁辅助利多卡因表麻抑制气管插管反应的效果. 安徽卫生职业技术学院学报. 2021(02): 32-34 .
    9. 杨雪,包涵. 芬太尼类物质滥用防控难点与对策研究. 湖北警官学院学报. 2021(03): 71-81 .
    10. 杨广博. 我国毒品定义的审视与重构——以非药用类麻醉药品和精神药品及其列管为视角. 中国人民公安大学学报(社会科学版). 2021(06): 87-96 .

    Other cited types(6)

Catalog

    Article views (100) PDF downloads (20) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return