Advanced Search
WANG Yuxiao, WANG Xinhong, WANG Limei, et al. Research progress of hydrolases catalyzing amide drugs[J]. J China Pharm Univ, 2025, 56(2): 244 − 251. DOI: 10.11665/j.issn.1000-5048.2024101203
Citation: WANG Yuxiao, WANG Xinhong, WANG Limei, et al. Research progress of hydrolases catalyzing amide drugs[J]. J China Pharm Univ, 2025, 56(2): 244 − 251. DOI: 10.11665/j.issn.1000-5048.2024101203

Research progress of hydrolases catalyzing amide drugs

Funds: This study was supported by the National Natural Science Foundation of China (No.82274013)
More Information
  • Received Date: October 11, 2024
  • Amide bond is formed by dehydration and condensation of amino and carboxyl groups in a molecule, which is used in structural design of drugs. The stability of the amide bond is affected by many factors, which make the pharmacokinetic behaviors of amide drugs complicated by metabolic heterogeneity. This review proposes that the expression and activity of hydrolase may be one of the important reasons for the obvious differences in the pharmacokinetics of amides among species, summarizes the common metabolic enzymes or proteins responsible for hydrolyzing amides so as to provide some reference for the structural design and further clinical study of amide drugs, and suggests that improper selection of in vitro evaluation systems may be an important cause for the inconsistency between between in vitro and in vivo pharmacokinetic characteristics of drugs, with a summary of the currently used in vitro drug metabolism systems for drug evaluation, aiming to provide a basis for preclinical evaluation of drugs.

  • [1]
    Husain A, Monga J, Narwal S, et al. Prodrug rewards in medicinal chemistry: an advance and challenges approach for drug designing[J]. Chem Biodivers, 2023, 20(11): e202301169. doi: 10.1002/cbdv.202301169
    [2]
    Mckertish CM, Kayser V. A novel dual-payload ADC for the treatment of HER2+ breast and colon cancer[J]. Pharmaceutics, 2023, 15(8): 2020. doi: 10.3390/pharmaceutics15082020
    [3]
    Ichikawa T, Yamada T, Treiber A, et al. Cross-species comparison of the metabolism and excretion of selexipag[J]. Xenobiotica, 2019, 49(3): 284-301. doi: 10.1080/00498254.2018.1444814
    [4]
    Zhuang Y, Sun QS, Jing T, et al. Contributions of intestine and liver to the absorption and disposition of FZJ-003, a selective JAK1 inhibitor with structure modification of filgotinib[J]. Eur J Pharm Sci, 2022, 175: 106211. doi: 10.1016/j.ejps.2022.106211
    [5]
    Namour F, Anderson K, Nelson C, et al. Filgotinib: a clinical pharmacology review[J]. Clin Pharmacokinet, 2022, 61(6): 819-832. doi: 10.1007/s40262-022-01129-y
    [6]
    Meng A, Anderson K, Nelson C, et al. Exposure-response relationships for the efficacy and safety of filgotinib and its metabolite GS-829845 in subjects with rheumatoid arthritis based on phase 2 and phase 3 studies[J]. Br J Clin Pharmacol, 2022, 88(7): 3211-3221. doi: 10.1111/bcp.15239
    [7]
    Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications[J]. Cell Metab, 2022, 34(11): 1700-1718. doi: 10.1016/j.cmet.2022.09.017
    [8]
    Basit A, Neradugomma NK, Wolford C, et al. Characterization of differential tissue abundance of major non-CYP enzymes in human[J]. Mol Pharm, 2020, 17(11): 4114-4124. doi: 10.1021/acs.molpharmaceut.0c00559
    [9]
    Song YR, Li CX, Liu GZ, et al. Drug-metabolizing cytochrome P450 enzymes have multifarious influences on treatment outcomes[J]. Clin Pharmacokinet, 2021, 60(5): 585-601. doi: 10.1007/s40262-021-01001-5
    [10]
    Fukami T, Yokoi T. The emerging role of human esterases[J]. Drug Metab Pharmacokinet, 2012, 27(5): 466-477. doi: 10.2133/dmpk.DMPK-12-RV-042
    [11]
    Fan PW, Zhang DL, Halladay JS, et al. Going beyond common drug metabolizing enzymes: case studies of biotransformation involving aldehyde oxidase, γ-glutamyl transpeptidase, cathepsin B, flavin-containing monooxygenase, and ADP-ribosyltransferase[J]. Drug Metab Dispos, 2016, 44(8): 1253-1261. doi: 10.1124/dmd.116.070169
    [12]
    Sodhi JK, Wong S, Kirkpatrick DS, et al. A novel reaction mediated by human aldehyde oxidase: amide hydrolysis of GDC-0834[J]. Drug Metab Dispos, 2015, 43(6): 908-915. doi: 10.1124/dmd.114.061804
    [13]
    Capasso R, Matias I, Lutz B, et al. Fatty acid amide hydrolase controls mouse intestinal motility in vivo[J]. Gastroenterology, 2005, 129(3): 941-951. doi: 10.1053/j.gastro.2005.06.018
    [14]
    Zhuang Y, Wang YX, Li N, et al. Hydrolytic metabolism of withangulatin A mediated by serum albumin instead of common esterases in plasma[J]. Eur J Drug Metab Pharmacokinet, 2023, 48(4): 363-376. doi: 10.1007/s13318-023-00834-8
    [15]
    Shimizu M, Fukami T, Nakajima M, et al. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase[J]. Drug Metab Dispos, 2014, 42(7): 1103-1109. doi: 10.1124/dmd.114.056994
    [16]
    Sato Y, Miyashita A, Iwatsubo T, et al. Simultaneous absolute protein quantification of carboxylesterases 1 and 2 in human liver tissue fractions using liquid chromatography-tandem mass spectrometry[J]. Drug Metab Dispos, 2012, 40(7): 1389-1396. doi: 10.1124/dmd.112.045054
    [17]
    Imai T. Human carboxylesterase isozymes: catalytic properties and rational drug design[J]. Drug Metab Pharmacokinet, 2006, 21(3): 173-185. doi: 10.2133/dmpk.21.173
    [18]
    Xu J, Qiu JC, Ji X, et al. Potential pharmacokinetic herb-drug interactions: have we overlooked the importance of human carboxylesterases 1 and 2?[J]. Curr Drug Metab, 2019, 20(2): 130-137. doi: 10.2174/1389200219666180330124050
    [19]
    Yan MC, Zhang Z, Liu ZM, et al. Catalytic hydrolysis mechanism of cocaine by human carboxylesterase 1: an orthoester intermediate slows down the reaction[J]. Molecules, 2019, 24(22): 4057. doi: 10.3390/molecules24224057
    [20]
    Wang YQ, Shang XF, Wang L, et al. Interspecies variation of clopidogrel hydrolysis in liver microsomes from various mammals[J]. Chem Biol Interact, 2020, 315: 108871. doi: 10.1016/j.cbi.2019.108871
    [21]
    Kisui F, Fukami T, Nakano M, et al. Strain and sex differences in drug hydrolase activities in rodent livers[J]. Eur J Pharm Sci, 2020, 142: 105143. doi: 10.1016/j.ejps.2019.105143
    [22]
    Di L. The impact of carboxylesterases in drug metabolism and pharmacokinetics[J]. Curr Drug Metab, 2019, 20(2): 91-102. doi: 10.2174/1389200219666180821094502
    [23]
    Sitbon O, Channick R, Chin KM, et al. Selexipag for the treatment of pulmonary arterial hypertension[J]. N Engl J Med, 2015, 373(26): 2522-2533. doi: 10.1056/NEJMoa1503184
    [24]
    Klose H, Chin KM, Ewert R, et al. Temporarily switching from oral to intravenous selexipag in patients with pulmonary arterial hypertension: safety, tolerability, and pharmacokinetic results from an open-label, phase III study[J]. Respir Res, 2021, 22(1): 34. doi: 10.1186/s12931-020-01594-8
    [25]
    Ichikawa T, Yamada T, Treiber A, et al. Pharmacokinetics of the selective prostacyclin receptor agonist selexipag in rats, dogs and monkeys[J]. Xenobiotica, 2018, 48(2): 186-196. doi: 10.1080/00498254.2017.1294277
    [26]
    Wagner C, Hois V, Taschler U, et al. KIAA1363-a multifunctional enzyme in xenobiotic detoxification and lipid ester hydrolysis[J]. Metabolites, 2022, 12(6): 516. doi: 10.3390/metabo12060516
    [27]
    Honda S, Fukami T, Tsujiguchi T, et al. Hydrolase activities of Cynomolgus monkey liver microsomes and recombinant CES1, CES2, and AADAC[J]. Eur J Pharm Sci, 2021, 161: 105807. doi: 10.1016/j.ejps.2021.105807
    [28]
    Kobayashi Y, Fukami T, Shimizu M, et al. Contributions of arylacetamide deacetylase and carboxylesterase 2 to flutamide hydrolysis in human liver[J]. Drug Metab Dispos, 2012, 40(6): 1080-1084. doi: 10.1124/dmd.112.044537
    [29]
    Hammid A, Fallon JK, Lassila T, et al. Activity and expression of carboxylesterases and arylacetamide deacetylase in human ocular tissues[J]. Drug Metab Dispos, 2022, 50(12): 1483-1492. doi: 10.1124/dmd.122.000993
    [30]
    Watanabe A, Fukami T, Takahashi S, et al. Arylacetamide deacetylase is a determinant enzyme for the difference in hydrolase activities of phenacetin and acetaminophen[J]. Drug Metab Dispos, 2010, 38(9): 1532-1537. doi: 10.1124/dmd.110.033720
    [31]
    Honda S, Fukami T, Hirosawa K, et al. Differences in hydrolase activities in the liver and small intestine between marmosets and humans[J]. Drug Metab Dispos, 2021, 49(9): 718-728. doi: 10.1124/dmd.121.000513
    [32]
    Sun RQ, Lin ZF, Wang XY, et al. Correction: AADAC protects colorectal cancer liver colonization from ferroptosis through SLC7A11-dependent inhibition of lipid peroxidation[J]. J Exp Clin Cancer Res, 2022, 41(1): 313. doi: 10.1186/s13046-022-02508-w
    [33]
    Kobayashi Y, Fukami T, Nakajima A, et al. Species differences in tissue distribution and enzyme activities of arylacetamide deacetylase in human, rat, and mouse[J]. Drug Metab Dispos, 2012, 40(4): 671-679. doi: 10.1124/dmd.111.043067
    [34]
    Kurokawa T, Fukami T, Yoshida T, et al. Arylacetamide deacetylase is responsible for activation of prasugrel in human and dog[J]. Drug Metab Dispos, 2016, 44(3): 409-416. doi: 10.1124/dmd.115.068221
    [35]
    Mahomoodally F, Abdallah HH, Suroowan S, et al. In silico exploration of bioactive phytochemicals against neurodegenerative diseases via inhibition of cholinesterases[J]. Curr Pharm Des, 2020, 26 (33): 4151-4162.
    [36]
    Silman I. The multiple biological roles of the cholinesterases[J]. Prog Biophys Mol Biol, 2021, 162: 41-56. doi: 10.1016/j.pbiomolbio.2020.12.001
    [37]
    Gok M, Cicek C, Sari S, et al. Novel activity of human BChE: lipid hydrolysis[J]. Biochimie, 2023, 204: 127-135. doi: 10.1016/j.biochi.2022.09.008
    [38]
    Bodur E, Cokuğraş AN, Tezcan EF. Inhibition effects of benactyzine and drofenine on human serum butyrylcholinesterase[J]. Arch Biochem Biophys, 2001, 386(1): 25-29. doi: 10.1006/abbi.2000.2188
    [39]
    Atay MS, Sari S, Bodur E. Molecular and computational analysis identify statins as selective inhibitors of human butyrylcholinesterase[J]. Protein J, 2023, 42(2): 104-111. doi: 10.1007/s10930-023-10090-z
    [40]
    Cao MD, Luo XY, Wu KM, et al. Targeting lysosomes in human disease: from basic research to clinical applications[J]. Signal Transduct Target Ther, 2021, 6(1): 379. doi: 10.1038/s41392-021-00778-y
    [41]
    Stoka V, Vasiljeva O, Nakanishi H, et al. The role of cysteine protease cathepsins B, H, C, and X/Z in neurodegenerative diseases and cancer[J]. Int J Mol Sci, 2023, 24(21): 15613. doi: 10.3390/ijms242115613
    [42]
    Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer[J]. Nat Rev Cancer, 2006, 6(10): 764-775. doi: 10.1038/nrc1949
    [43]
    Li DP, Sun XY, Li YQ, et al. AGCM-22, a novel cetuximab-based EGFR-targeting antibody-drug-conjugate with highly selective anti-glioblastoma efficacy[J]. Bioorg Med Chem, 2024, 102: 117657. doi: 10.1016/j.bmc.2024.117657
    [44]
    Satsangi A, Roy SS, Satsangi RK, et al. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells[J]. Mol Pharm, 2014, 11(6): 1906-1918. doi: 10.1021/mp500128k
    [45]
    Kozminski KD, Selimkhanov J, Heyward S, et al. Contribution of extrahepatic aldehyde oxidase activity to human clearance[J]. Drug Metab Dispos, 2021, 49(9): 743-749. doi: 10.1124/dmd.120.000313
    [46]
    Busby RW, Cai XK, Yang S, et al. Metopimazine is primarily metabolized by a liver amidase in humans[J]. Pharmacol Res Perspect, 2022, 10(1): e00903. doi: 10.1002/prp2.903
    [47]
    Schofield PC, Robertson IG, Paxton JW. Inter-species variation in the metabolism and inhibition of N-[(2'-dimethylamino)ethyl] acridine-4-carboxamide (DACA) by aldehyde oxidase[J]. Biochem Pharmacol, 2000, 59(2): 161-165. doi: 10.1016/S0006-2952(99)00323-8
    [48]
    Pertwee RG. Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications[J]. Proc Nutr Soc, 2014, 73(1): 96-105. doi: 10.1017/S0029665113003649
    [49]
    van Egmond N, Straub VM, van der Stelt M. Targeting endocannabinoid signaling: FAAH and MAG lipase inhibitors[J]. Annu Rev Pharmacol Toxicol, 2021, 61: 441-463. doi: 10.1146/annurev-pharmtox-030220-112741
    [50]
    Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: a natural cargo[J]. Int J Biol Macromol, 2019, 123: 979-990. doi: 10.1016/j.ijbiomac.2018.11.053
    [51]
    De Simone G, di Masi A, Ascenzi P. Serum albumin: a multifaced enzyme[J]. Int J Mol Sci, 2021, 22(18): 10086. doi: 10.3390/ijms221810086
    [52]
    Kono K, Fukuchi Y, Okawa H, et al. Unique hydrolysis of an ester-type prodrug of levodopa in human plasma: relay-type role sharing between alpha-1 acid glycoprotein and human serum albumin[J]. Mol Pharm, 2019, 16(10): 4131-4138. doi: 10.1021/acs.molpharmaceut.9b00435
    [53]
    Watanabe H, Tanase S, Nakajou K, et al. Role of arg-410 and Tyr-411 in human serum albumin for ligand binding and esterase-like activity[J]. Biochem J, 2000, 349 (Pt 3): 813-819.
    [54]
    Sun L, Mi K, Hou YX, et al. Pharmacokinetic and pharmacodynamic drug-drug interactions: research methods and applications[J]. Metabolites, 2023, 13(8): 897. doi: 10.3390/metabo13080897
    [55]
    Tsugoshi Y, Watanabe Y, Tanikawa Y, et al. Inhibitory effects of organophosphate esters on carboxylesterase activity of rat liver microsomes[J]. Chem Biol Interact, 2020, 327: 109148. doi: 10.1016/j.cbi.2020.109148
    [56]
    Khidkhan K, Poapolathep S, Kulprasertsri S, et al. Comparative in vitro biotransformation of fipronil in domestic poultry using liver microsome[J]. J Vet Sci, 2022, 23(6): e82. doi: 10.4142/jvs.22178
    [57]
    Wang XW, He B, Shi J, et al. Comparative proteomics analysis of human liver microsomes and S9 fractions[J]. Drug Metab Dispos, 2020, 48(1): 31-40. doi: 10.1124/dmd.119.089235
    [58]
    Qiao SD, Feng SS, Wu ZT, et al. Functional proliferating human hepatocytes: in vitro hepatocyte model for drug metabolism, excretion, and toxicity[J]. Drug Metab Dispos, 2021, 49(4): 305-313. doi: 10.1124/dmd.120.000275
    [59]
    Wang HB, Brown PC, Chow ECY, et al. 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory consideration[J]. Clin Transl Sci, 2021, 14(5): 1659-1680. doi: 10.1111/cts.13066
    [60]
    Marsee A, Roos FJM, Verstegen MMA, et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids[J]. Cell Stem Cell, 2021, 28(5): 816-832. doi: 10.1016/j.stem.2021.04.005
    [61]
    Heydari Z, Moeinvaziri F, Agarwal T, et al. Organoids: a novel modality in disease modeling[J]. Biodes Manuf, 2021, 4(4): 689-716. doi: 10.1007/s42242-021-00150-7
    [62]
    Miller CO, Cao J. Probing hepatic glucose metabolism via 13C NMR spectroscopy in perfused livers-applications to drug development[J]. Metabolites, 2021, 11(11): 712. doi: 10.3390/metabo11110712
    [63]
    Blondeel J, Gilbo N, Wylin T, et al. Porcine normothermic isolated liver perfusion[J]. J Vis Exp, 2023(196): (196).
    [64]
    Czuba LC, Wu X, Huang WZ, et al. Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis[J]. Clin Transl Sci, 2021, 14(3): 976-989. doi: 10.1111/cts.12962
    [65]
    Davies M, Peramuhendige P, King L, et al. Evaluation of in vitro models for assessment of human intestinal metabolism in drug discovery[J]. Drug Metab Dispos, 2020, 48(11): 1169-1182. doi: 10.1124/dmd.120.000111
    [66]
    Chen X, Yu FJ, Guo XL, et al. Clock gene Bmal1 controls diurnal rhythms in expression and activity of intestinal carboxylesterase 1[J]. J Pharm Pharmacol, 2021, 73(1): 52-59. doi: 10.1093/jpp/rgaa035
    [67]
    Li AP. In vitro human cell-based experimental models for the evaluation of enteric metabolism and drug interaction potential of drugs and natural products[J]. Drug Metab Dispos, 2020, 48(10): 980-992. doi: 10.1124/dmd.120.000053
    [68]
    Li AP, Alam N, Amaral K, et al. Cryopreserved human intestinal mucosal epithelium: a novel in vitro experimental system for the evaluation of enteric drug metabolism, cytochrome P450 induction, and enterotoxicity[J]. Drug Metab Dispos, 2018, 46(11): 1562-1571. doi: 10.1124/dmd.118.082875
    [69]
    Tian CM, Yang MF, Xu HM, et al. Stem cell-derived intestinal organoids: a novel modality for IBD[J]. Cell Death Discov, 2023, 9(1): 255. doi: 10.1038/s41420-023-01556-1
    [70]
    Cavallero A, Puccini P, Aprile V, et al. Presence, enzymatic activity, and subcellular localization of paraoxonases 1, 2, and 3 in human lung tissues[J]. Life Sci, 2022, 311 (Pt A): 121147.
    [71]
    Liu SB, Wang ZT, Tian X, et al. Predicting the effects of CYP2C19 and carboxylesterases on vicagrel, a novel P2Y12 antagonist, by physiologically based pharmacokinetic/pharmacodynamic modeling approach[J]. Front Pharmacol, 2020, 11: 591854. doi: 10.3389/fphar.2020.591854
    [72]
    Parker RB, Casey Laizure S. The effect of ethanol on oral cocaine pharmacokinetics reveals an unrecognized class of ethanol-mediated drug interactions[J]. Drug Metab Dispos, 2010, 38(2): 317-322. doi: 10.1124/dmd.109.030056
    [73]
    Zhu T, Wu Y, Li XM, et al. Vicagrel is hydrolyzed by Raf kinase inhibitor protein in human intestine[J]. Biopharm Drug Dispos, 2022, 43(6): 247-254. doi: 10.1002/bdd.2340
    [74]
    Xu AN, He F, Zhang XN, et al. Tacrine-hydroxamate derivatives as multitarget-directed ligands for the treatment of Alzheimer’s disease: design, synthesis, and biological evaluation[J]. Bioorg Chem, 2020, 98: 103721. doi: 10.1016/j.bioorg.2020.103721
    [75]
    Mijanović O, Branković A, Panin AN, et al. Cathepsin B: a sellsword of cancer progression[J]. Cancer Lett, 2019, 449: 207-214. doi: 10.1016/j.canlet.2019.02.035

Catalog

    Article views (59) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return