Citation: | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[1] |
Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms[J]. Cell,2011,147(2):275-292.
|
[2] |
Gupta GP, Massague J. Cancer metastasis: building a framework[J]. Cell,2006,127(4):679-695.
|
[3] |
Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites[J]. Nat Rev Cancer,2002,2(8):563-572.
|
[4] |
Li MR, Li T, Mo R. Recent progress in targeted drug delivery nanosystems for pancreatic cancer treatment[J]. APSB,2018,53(7):1090-1099.
|
[5] |
Wong SY, Hynes RO. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide?[J]. Cell Cycle,2006,5(8):812-817.
|
[6] |
Cote B, Rao D, Alany RG, et al. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors[J]. Adv Drug Delivery Rev,2019,144:16-34.
|
[7] |
Ryan TJ. Structure and function of lymphatics[J]. J Invest Dermatol,1989,93(2
|
[8] |
Card CM, Yu SS, Swartz MA. Emerging roles of lymphatic endothelium in regulating adaptive immunity[J]. J Clin Invest,2014,124(3):943-952.
|
[9] |
Swartz MA. The physiology of the lymphatic system[J]. Adv Drug Deliv Rev,2001,50(1):3-20.
|
[10] |
Kawada K, Hosogi H, Sonoshita M, et al. Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes[J]. Oncogene,2007,26(32):4679-4688.
|
[11] |
Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature,2001,410(6824):50-56.
|
[12] |
Kawada K, Sonoshita M, Sakashita H, et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes[J]. Cancer Res,2004,64(11):4010-4017.
|
[13] |
Stacker SA, Baldwin ME, Achen MG. The role of tumor lymphangiogenesis in metastatic spread[J]. FASEB J,2002,16(9):922-934.
|
[14] |
White RR, Stanley WE, Johnson JL, et al. Long-term survival in 2,505 patients with melanoma with regional lymph node metastasis[J]. Ann Surg,2002,235(6):879-887.
|
[15] |
Fife K, Thompson JF. Lymph-node metastases in patients with melanoma: what is the optimum management?[J]. Lancet Oncol,2001,2(10):614-621.
|
[16] |
Ryan GM, Kaminskas LM, Bulitta JB, et al. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin[J]. J Control Release,2013,172(1):128-136.
|
[17] |
Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update[J]. Adv Drug Deliv Rev,2008,60(6):702-716.
|
[18] |
Shao K, Singha S, Clemente-Casares X, et al. Nanoparticle-based immunotherapy for cancer[J]. ACS Nano,2015,9(1):16-30.
|
[19] |
Cho K, Wang X, Nie SM, et al. Therapeutic nanoparticles for drug delivery in cancer[J]. Clin Cancer Res,2008,14(5):1310-1316.
|
[20] |
Wang MY, Li T, Jiang SG, et al. Recent advances in liposome-based co-delivery systems for combination cancer therapy[J]. Chin J Bioprocess Engineer(生物加工过程),2018,16(5):33-41.
|
[21] |
Chen X, Kang Y, Wu J, et al. Advances in biodegradable functional polymers based protein drug delivery system [J]. J China Pharm Univ (中国药科大学学报),2017,48(2):142-149.
|
[22] |
Abellan-Pose R, Csaba N, Alonso MJ. Lymphatic targeting of nanosystems for anticancer drug therapy[J]. Curr Pharm Des,2016,22(9):1194-1209.
|
[23] |
Attili-Qadri S, Karra N, Nemirovski A, et al. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption[J]. Proc Natl Acad Sci U S A,2013,110 (43):17498-17503.
|
[24] |
Chen JH, Wang L, Yao Q, et al. Drug concentrations in axillary lymph nodes after lymphatic chemotherapy on patients with breast cancer[J]. Breast Cancer Res,2004,6(4):474-477.
|
[25] |
Harvey AJ, Kaestner SA, Sutter DE, et al. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs[J]. Pharm Res,2011,28(1):107-116.
|
[26] |
Oussoren C, Velinova M, Scherphof G, et al. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. IV. Fate of liposomes in regional lymph nodes[J]. Biochim Biophys Acta,1998,1370(2):259-272.
|
[27] |
Thomas SN, Schudel A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery[J]. Curr Opin Chem Eng,2015,7:65-74.
|
[28] |
Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers[J]. J Control Release,2014,193:241-256.
|
[29] |
Rao DA, Forrest ML, Alani AW, et al. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery[J]. J Pharm Sci,2010,99 (4):2018-2031.
|
[30] |
Zhang YN, Lazarovits J, Poon W, et al. Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity[J]. Nano Lett,2019,19(10):7226-7235.
|
[31] |
Cabral H, Makino J, Matsumoto Y, et al. Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers[J]. ACS Nano,2015,9(5):4957-4967.
|
[32] |
Moghimi SM. The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes[J]. Biomaterials,2006,27(1):136-144.
|
[33] |
Hawley AE, Davis SS, Illum L. Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics[J]. Adv Drug Deliv Rev,1995,17(1):129-148.
|
[34] |
Zeng Q, Jiang H, Wang T, et al. Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses[J]. J Control Release,2015,200:1-12.
|
[35] |
Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity[J]. Nat Rev Drug Discov,2015,14(11):781-803.
|
[36] |
Chen JH, Ling R, Yao Q, et al. Effect of small-sized liposomal adriamycin administered by various routes on a metastatic breast cancer model[J]. Endocr Relat Cancer,2005,12(1):93-100.
|
[37] |
Doddapaneni BS, Kyryachenko S, Chagani SE, et al. A three-drug nanoscale drug delivery system designed for preferential lymphatic uptake for the treatment of metastatic melanoma[J]. J Control Release,2015,220(Pt A):503-514.
|
[38] |
Zhang ZP, Tongchusak S, Mizukami Y, et al. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery[J]. Biomaterials,2011,32(14):3666-3678.
|
[39] |
Kaminskas LM, Kota J, McLeod VM, et al. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats[J]. J Control Release,2009,140(2):108-116.
|
[40] |
Jiang H, Wang Q, Li L, et al. Turning the old adjuvant from gel to nanoparticles to amplify CD8 + T cell responses [J]. Adv Sci,2017,5(1):1700426.doi: 10.1002/advs.201700426.
|
[41] |
Hong XY, Zhong XF, Du GS, et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency [J]. Sci Adv,2020,6(25): eaaz4462.
|
[42] |
Laakkonen P, Porkka K, Hoffman JA, et al. A tumor-homing peptide with a targeting specificity related to lymphatic vessels[J]. Nat Med,2002,8(7):751-755.
|
[43] |
Yan ZQ, Wang F, Wen ZY, et al. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor[J]. J Control Release,2012,157(1):118-125.
|
[44] |
Luo GP, Yu XJ, Jin C, et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors[J]. Int J Pharm,2010,385(1/2):150-156.
|
[45] |
Jin L, Nakajima M, Nicolson GL. Immunochemical localization of heparanase in mouse and human melanomas[J]. Int J Cancer,1990,45(6):1088-1095.
|
[46] |
Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion[J]. Biochim Biophys Acta,2001,1471(3):99-108.
|
[47] |
Dafni H, Cohen B, Ziv K, et al. The role of heparanase in lymph node metastatic dissemination: dynamic contrast-enhanced MRI of Eb lymphoma in mice[J]. Neoplasia,2005,7(3):224-233.
|
[48] |
Ye TT, Jiang XW, Li J, et al. Low molecular weight heparin mediating targeting of lymph node metastasis based on nanoliposome and enzyme-substrate interaction[J]. Carbohydr Polym,2015,122:26-38.
|
[49] |
Yang WH, Luo DF, Wang SX, et al. TMTP1, a novel tumor-homing peptide specifically targeting metastasis[J]. Clin Cancer Res,2008,14(17):5494-5502.
|
[50] |
Wei R, Jiang GY, Lv MQ, et al. TMTP1-modified indocyanine green-loaded polymeric micelles for targeted imaging of cervical cancer and metastasis sentinel lymph node in vivo[J]. Theranostics,2019,9(24):7325-7344.
|
[51] |
Lim HY, Thiam CH, Yeo KP, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL[J]. Cell Metab,2013,17 (5):671-684.
|
[52] |
Kuai R, Sun XQ, Yuan WM, et al. Subcutaneous nanodisc vaccination with neoantigens for combination cancer immunotherapy[J]. Bioconjugate Chem,2018,29(3):771-775.
|
[53] |
Kuai R, Ochyl LJ, Bahjat KS, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy[J]. Nat Mater,2017,16(4):489-496.
|
[54] |
Caminschi I, Maraskovsky E, Heath WR. Targeting dendritic cells in vivo for cancer therapy[J]. Front Immunol,2012,3:13.
|
[55] |
Tacken PJ, de Vries IJM, Torensma R, et al. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting[J]. Nat Rev Immunol,2007,7(10):790-802.
|
[56] |
Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines[J]. Trends in Immunology,2006,27(12):573-579.
|
[57] |
Huang SQ, Shi M, He YN, et al. Construction and in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system [J]. J China Pharm Univ (中国药科大学学报),2019,50(6):743-752.
|
[58] |
Zhang LH, Wu SJ, Qin Y, et al. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy[J]. Nano Lett,2019,19(7):4237-4249.
|
[59] |
Wang C, Liu P, Zhuang Y, et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory[J]. Vaccine,2014,32(42):5475-5483.
|
[1] | GUAN Yitong, HU Pengwei, ZOU Wenyu, LU Yuting, SONG Min, HANG Taijun. Determination of formaldehyde and glyoxal in varenicline tartrate using derivative method with HPLC[J]. Journal of China Pharmaceutical University, 2021, 52(3): 332-338. DOI: 10.11665/j.issn.1000-5048.20210310 |
[2] | XING Beini, WU Qiong, TANG Qingfa, LIU Jinghan, LIANG Jingyu, YANG Chunhua. Identification of diterpenoid alkaloids in the roots of cultured Aconitum coreanum by HPLC-Q-TOF-MS[J]. Journal of China Pharmaceutical University, 2014, 45(2): 192-199. DOI: 10.11665/j.issn.1000-5048.20140211 |
[3] | ZHANG Xian-tao, LI Yan, ZHANG Lei-hong, QIN Min-jian. A new ginkgolide from Ginkgo biloba[J]. Journal of China Pharmaceutical University, 2009, 40(4): 306-309. |
[4] | Studies on the 2D NMR Spectra of Jolkinolide Diterpenoids from Euphorbia fischriana[J]. Journal of China Pharmaceutical University, 2004, (1): 18-21. |
[5] | Wang Lihua, Chen Zhonghua. Monitoring the Synthesis Conditions of 5,8-Dihydro-1-naphthol by HPLC[J]. Journal of China Pharmaceutical University, 1995, (6). |
[6] | Determination of Three Bufadienolides in the Liposome-Ch''an Su by RP-HPLC[J]. Journal of China Pharmaceutical University, 1993, (2): 116-118. |
[7] | Determination of Bufadienolide in Liu Sheng Pills by HPLC[J]. Journal of China Pharmaceutical University, 1991, (6): 372-374. |
[8] | Quantitative Analysis of the Glucosides and Benzoic Acid in Peony Root Collected in Different Seasons by RP-HPLC[J]. Journal of China Pharmaceutical University, 1991, (5): 279-281. |
[9] | QUANTITATIVE ANALYSIS OF GLUCOSIDES AND BENZOIC ACID IN PEONY ROOT FROM 13 SPECIES BY RP-HPLC[J]. Journal of China Pharmaceutical University, 1989, (3): 139-142. |
[10] | IDENTIFICATION OF 5 SPECIES OF RABDOSIA BY HPLC[J]. Journal of China Pharmaceutical University, 1986, (2): 143-145. |