Citation: | SHI Min, YONG Qin, HE Yingna, HUANG Shiqin, ZHAO Xuan, YU Xian. Construction and in vivo evaluation of a thermosensitive hydrogel system loading with Pseudomonas aeruginosa DNA vaccine[J]. Journal of China Pharmaceutical University, 2021, 52(2): 186-194. DOI: 10.11665/j.issn.1000-5048.20210207 |
[1] |
. Clin Microbiol Rev, 2019, 32(4):
|
[2] |
Merakou C, Schaefers MM, Priebe GP. Progress toward the elusive Pseudomonas aeruginosa vaccine [J]. Surg Infect (Larchmt), 2018, 19(8): 757-768.
|
[3] |
Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies [J]. Biotechnol Adv, 2019, 37(1): 177-192.
|
[4] |
Hoggarth A, Weaver A, Pu Q, et al. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa [J]. Drug Des Devel Ther, 2019, 13: 909-924.
|
[5] |
Kazemi Moghaddam E, Owlia P, Jahangiri A, et al. Conserved OprF as a selective immunogen against Pseudomonas aeruginosa [J]. Iran J Pathol, 2017, 12(2): 165-170.
|
[6] |
Fito-Boncompte L, Chapalain A, Bouffartigues E, et al. Full virulence of Pseudomonas aeruginosa requires OprF [J]. Infect Immun, 2011, 79(3): 1176-1186.
|
[7] |
Bahey-El-Din M, Mohamed SA, Sheweita SA, et al. Recombinant N-terminal outer membrane porin (OprF) of Pseudomonas aeruginosa is a promising vaccine candidate against both P. aeruginosa and some strains of Acinetobacter baumannii [J]. Int J Med Microbiol, 2020, 310 (3): 151415.
|
[8] |
Yu X, Wang Y, Xia Y, et al. A DNA vaccine encoding VP22 of herpes simplex virus type I (HSV-1) and OprF confers enhanced protection from Pseudomonas aeruginosa in mice [J]. Vaccine, 2016, 34(37): 4399-4405.
|
[9] |
Chapman R, Rybicki EP. Use of a novel enhanced DNA vaccine vector for preclinical virus vaccine investigation [J]. Vaccines (Basel), 2019, 7 (2): 50.
|
[10] |
Hobernik D, Bros M. DNA vaccines-how far from clinical use ? [J]. Int J Mol Sci, 2018, 19(11): 3605.
|
[11] |
HUANG SQ, SHI M, HE YN, et al. Construction and in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system [J]. J China Pharm Univ (中国药科大学学报), 2019, 50 (6): 743-752.
|
[12] |
Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy [J]. Drug Discov Today, 2016, 21 (11): 1835-1849.
|
[13] |
Mathew AP, Uthaman S, Cho KH, et al. Injectable hydrogels for delivering biotherapeutic molecules [J]. Int J Biol Macromol, 2018, 110: 17-29.
|
[14] |
Gao Y, Ji H, Peng L, et al. Development of PLGA-PEG-PLGA hydrogel delivery system for enhanced immunoreaction and efficacy of Newcastle disease virus DNA vaccine [J]. Molecules, 2020, 25(11): 2505.
|
[15] |
Chen Y, Shi J, Zhang Y, et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction [J]. J Mater Chem B, 2020, 8 (5): 980-992.
|
[16] |
Liu D, Wu Q, Zhu Y, et al. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization [J]. Drug Deliv, 2019, 26 (1): 522-531.
|
[17] |
Jeong JH, Kim SW, Park TG. Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency [J]. Pharm Res, 2004, 21(1):50-54.
|
[18] |
Norouzi F, Behrouz B, Ranjbar M, et al. Immunotherapy with IgY antibodies toward outer membrane protein F protects burned mice against Pseudomonas aeruginosa infection [J]. J Immunol Res, 2020: 7840631.
|
[19] |
Adlbrecht C, Wurm R, Depuydt P, et al. Efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in mechanically ventilated intensive care patients-a randomized clinical trial [J]. Crit Care, 2020, 24 (1): 74.
|
[20] |
Shen W, Chen X, Luan J, et al. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment [J]. ACS Appl Mater Interfaces, 2017, 9 (46): 40031-40046.
|
[21] |
Wang P, Chu W, Zhuo X, et al. Modified PLGA-PEG-PLGA thermosensitive hydrogels with suitable thermosensitivity and properties for use in a drug delivery system [J]. J Mater Chem B, 2017, 5 (8): 1551-1565.
|
[22] |
Cao D, Zhang X, Akabar MD, et al. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer [J]. Artif Cells Nanomed Biotechnol, 2019, 47 (1): 181-191.
|
[23] |
Chan PS, Li Q, Zhang B, et al. In vivo biocompatibility and efficacy of dexamethasone-loaded PLGA-PEG-PLGA thermogel in an alkali-burn induced corneal neovascularization disease model [J]. Eur J Pharm Biopharm, 2020, 155: 190-198.
|
[24] |
Wang X, Zhang Y, Xue W, et al. Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization [J]. J Biomater Appl, 2017, 31 (6): 923-932.
|
[25] |
Moffatt S, Cristiano RJ. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells [J]. Int J Pharm, 2006, 321(1-2):143-154.
|
[26] |
Gong YB, Ma HC, Liu JG. Controlled WISP-1 shRNA delivery using thermosensitive biodegradable hydrogel in the treatment of osteoarthritis [J]. J Bionic Eng, 2015, 12 (2): 285-293.
|
[1] | GUAN Yitong, HU Pengwei, ZOU Wenyu, LU Yuting, SONG Min, HANG Taijun. Determination of formaldehyde and glyoxal in varenicline tartrate using derivative method with HPLC[J]. Journal of China Pharmaceutical University, 2021, 52(3): 332-338. DOI: 10.11665/j.issn.1000-5048.20210310 |
[2] | XING Beini, WU Qiong, TANG Qingfa, LIU Jinghan, LIANG Jingyu, YANG Chunhua. Identification of diterpenoid alkaloids in the roots of cultured Aconitum coreanum by HPLC-Q-TOF-MS[J]. Journal of China Pharmaceutical University, 2014, 45(2): 192-199. DOI: 10.11665/j.issn.1000-5048.20140211 |
[3] | ZHANG Xian-tao, LI Yan, ZHANG Lei-hong, QIN Min-jian. A new ginkgolide from Ginkgo biloba[J]. Journal of China Pharmaceutical University, 2009, 40(4): 306-309. |
[4] | Studies on the 2D NMR Spectra of Jolkinolide Diterpenoids from Euphorbia fischriana[J]. Journal of China Pharmaceutical University, 2004, (1): 18-21. |
[5] | Wang Lihua, Chen Zhonghua. Monitoring the Synthesis Conditions of 5,8-Dihydro-1-naphthol by HPLC[J]. Journal of China Pharmaceutical University, 1995, (6). |
[6] | Determination of Three Bufadienolides in the Liposome-Ch''an Su by RP-HPLC[J]. Journal of China Pharmaceutical University, 1993, (2): 116-118. |
[7] | Determination of Bufadienolide in Liu Sheng Pills by HPLC[J]. Journal of China Pharmaceutical University, 1991, (6): 372-374. |
[8] | Quantitative Analysis of the Glucosides and Benzoic Acid in Peony Root Collected in Different Seasons by RP-HPLC[J]. Journal of China Pharmaceutical University, 1991, (5): 279-281. |
[9] | QUANTITATIVE ANALYSIS OF GLUCOSIDES AND BENZOIC ACID IN PEONY ROOT FROM 13 SPECIES BY RP-HPLC[J]. Journal of China Pharmaceutical University, 1989, (3): 139-142. |
[10] | IDENTIFICATION OF 5 SPECIES OF RABDOSIA BY HPLC[J]. Journal of China Pharmaceutical University, 1986, (2): 143-145. |