• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LI Wenting, WANG Lu, ZHANG Can. Influence of surface characteristics on hepatocellular carcinoma cells uptake of nano-liposomes[J]. Journal of China Pharmaceutical University, 2013, 44(3): 244-248. DOI: 10.11665/j.issn.1000-5048.20130311
Citation: LI Wenting, WANG Lu, ZHANG Can. Influence of surface characteristics on hepatocellular carcinoma cells uptake of nano-liposomes[J]. Journal of China Pharmaceutical University, 2013, 44(3): 244-248. DOI: 10.11665/j.issn.1000-5048.20130311

Influence of surface characteristics on hepatocellular carcinoma cells uptake of nano-liposomes

More Information
  • Liposomes with different surface characteristics were prepared based on different lipid materials and preparation conditions. Paclitaxel(PTX)was selected as the model drug. The release characteristics of these liposomes were investigated. The uptaken of liposomes of different surface properties in hepatocellular carcinoma cells were studied through cellular uptaken experiment. All these liposomes showed sustained release property, as their accumulative release amounts were less than 30% in 48 h. The cytotoxicity of every preparation was evaluated with MTT method. Hepatocellular carcinoma cells survived more than 80% when the concentration of PTX was below 50 μg/mL in 48 h. The effect of different surface characteristics on uptake of liposomes by hepatocellular carcinoma cell lines(BEL-7402 cells and HepG2 cells)was investigated through quantification of PTX in cells. Cell uptake results indicated that preparations with smaller size or higher Zeta potential showed more PTX uptake.
  • Related Articles

    [1]LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506
    [2]LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607
    [3]XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309
    [4]MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209
    [5]LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208
    [6]CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107
    [7]LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27.
    [8]SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222.
    [9]Chemical constituents from n-butanol extract of the stems of Lonicera japonica[J]. Journal of China Pharmaceutical University, 2010, 41(4): 333-336.
    [10]Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28.

Catalog

    Article views (1043) PDF downloads (2100) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return