Citation: | LI Bing, LI Bo, ZHOU Changlin. Progress on antimicrobial peptides against drug-resistant bacterial infection[J]. Journal of China Pharmaceutical University, 2014, 45(5): 580-586. DOI: 10.11665/j.issn.1000-5048.20140514 |
[1] |
Walsh TR,Weeks J,Livermore DM,et al.Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health:an environmental point prevalence study[J].Lancet Infect Dis,2011,11(5):355-362.
|
[2] |
Yoneyama H,Katsumata R.Antibiotic resistance in bacteria and its future for novel antibiotic development[J] Biosci Biotechnol Biochem,2006,70(5):1 060-1 075.
|
[3] |
Baroud M,Dandache I,Araj GF,et al.Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon:role of OXA-48 and NDM-1 carbapenemases[J].Int J Antimicrob Agents,2013,41(1):75-79.
|
[4] |
Sahai S.Dissemination of NDM-1[J].Lancet Infect Dis,2012,12(2):100-101.
|
[5] |
Shi K,Berghuis AM.Structural basis for dual nucleotide selectivity of aminoglycoside 2″-phosphotransferase Iva provides insight on determinants of nucleotide specificity of aminoglycoside kinases[J].J Biol Chem,2012,287(16):13 094-13 102.
|
[6] |
Ramirez MS,Tolmasky ME.Aminoglycoside modifying enzymes[J].Drug Resist Update,2010,13(6):151-171.
|
[7] |
Magalhaes ML,Vetting MW,Gao F,et al.Kinetic and structural analysis of bisubstrate inhibition of the Salmonella enterica aminoglycoside 6′-N-acetyltransferase[J].Biochemistry,2008,47(2):579-584.
|
[8] |
Wright E,Serpersu EH.Enzyme-substrate interactions with an antibiotic resistance enzyme:aminoglycoside nucleotidyltransferase(2″)-Ia characterized by kinetic and thermodynamic methods[J].Biochemistry,2005,44(34):11 581-11 591.
|
[9] |
Ramirez MS,Tolmasky ME.Aminoglycoside modifying enzymes[J].Drug Resist Update,2010,13(6):151-171.
|
[10] |
Piddock LJ.Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria [J].Clin Microbiol Rev,2006,19(2):382-402.
|
[11] |
Sigal N,Cohen-Karni D,Siemion S,et al.MdfA from Escherichia coli,a model rotein for tudying secondary multidrug transport[J].J Mol Microbiol Biotechnol,2006,11(6):308-317.
|
[12] |
Kumar S,Varela MF.Biochemistry of bacterial multidrug efflux pumps[J].Int J Mol Sci,2012,13(4):4 484-4 495.
|
[13] |
Ding Y,Onodera Y,Lee JC,et al.NorB,an efflux pump in Staphylococcus aureus strain MW2,contributes to bacterial fitness in abscesses[J].J Bacteriol,2008,190(21):7 123-7 129.
|
[14] |
Landrum ML,Neumann C,Cook C,et al.Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system,2005-2010[J].JAMA,2012,308(1):50-59.
|
[15] |
Sonneville R,Mirabel M,Hajage D,et al.Neurologic complications and outcomes of infective endocarditis in critically ill patients:the ENDOcardite en REAnimation prospective multicenter study[J].Crit Care Med,2010,39(6):1 474-1 481.
|
[16] |
Hao HH,Yuan ZH,Shen ZQ,et al.Mutational and transcriptomic changes involved in the development of macrolide resistance in campylobacter jejuni[J].Antimicrob Agents Chemother,2013,3(57):1 369-1 378.
|
[17] |
Andini N,Nash KA.Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible[J].Antimicrob Agents Chemother,2006,50(7):2 560-2 562.
|
[18] |
Nonaka S,Matsuzaki K,Kazama T,et al.Antimicrobial susceptibility and mechanisms of high-level macrolide resistance in clinical isolates of Moraxella nonliquefaciens[J].J Antimicrob Chemother,2014,63(Pt 2):242-247.
|
[19] |
Saito R,Nonaka S,Nishiyama H,et al.Molecular mechanism of macrolide-lincosamide resistance in Moraxella catarrhalis[J].J Med Microbiol,2012,61(Pt 10):1 435-1 438.
|
[20] |
Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases[J].Antimicrob Agents Chemother,2010,54(1):24-38.
|
[21] |
Wang J,Li B,Li Y,et al.BF-30 effectively inhibits ciprofloxacin-resistant bacteria in vitro and in a rat model of vaginosis [J].Arch Pharm Res,2013,doi: 10.1007/s12272-013-0248-6.
|
[22] |
Hao QR,Wang H,Wang J,et al.Effective antimicrobial activity of Cbf-K16 and Cbf-A7A13 against NDM-1-carrying Escherichia coli vities of the novel ceragenin CSA-13,alone or in combination with colistin,tobramycin,and ciprofloxacin,against Pseudomonas aeruginosa strains isolated from cystic fibrosis patients[J].Chemotherapy,2011,57(6):505-510.
|
[23] |
Desbois AP,Coote PJ.Bactericidal synergy of lysostaphin in combination with antimicrobial peptides[J].Eur J Clin Microbiol Infect Dis,2011,30(8):1 015-1 021.6 mutant Cbf-K16 selectively inhibits non-small cell lung cancer proliferation in vitro[J].Oncol Rep,2013,30(5):2 502-2 510.
|
[24] |
Wang H,Ke MY,Tian Y,et al.BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice[J].Eur J Pharmacol,2013,707(1/2/3):1-10.
|
[25] |
Engler AC,Wiradharma N,Zhan YO.Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections[J].Nano Today,2012,7(3):201-222.
|
[26] |
Nguyen LT,Haney EF,Vogel HJ.The expanding scope of antimicrobial peptide structures and theier modes of action[J].Trends Biotechnol,2011,29(9):464-472.
|
[27] |
Zhou HM,Dou J,Wang J,et al.The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmic membrane integrity[J].Peptides,2011,32(6):1 131-1 138.
|
[28] |
Ramos R,Domingues L,Gama M.Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum[J].Protein Expr Purif,2010,71(1):1-7.
|
[29] |
Zakharchenko NS,Pigoleva SV,Iukhmanova AA et al.Use of the gene of antimicrobial peptide cecropin P1 for producing marker-free transgenic plants[J].Genetika,2009,45(8):1 061-1 066.
|
[30] |
Brogden KA.Antimicrobial peptides:poreformers or metabolic inhibitors in bacteria[J]?Nat Rev:Microbiol,2005,3(3):238-250.
|
[31] |
Cassone M,Otvos L Jr.Synergy among antibacterial peptides and between peptides and small-molecule antibiotics[J].Expert Rev Anti Ther,2010,8(6):703-716.
|
[32] |
Giuliani A,Pirri G,Nicoletto SF.Antimicrobial peptides:an overview of a promising class of therapeutics[J].Cent Eur J Biol,2007,2(1):1-33.
|
[33] |
Hou GB,Meng QX,Song YZ.The perspective of clinical application of antimicrobial peptides[J].Chin Bull Life Sci(生命科学),2012,24(4):390-397.
|
[34] |
Mehta S,Singh C,Plata KB,et al.β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives[J].Antimicrob Agents Chemother,2012,56(12):6 192-6 200.
|
[35] |
Werth BJ,Sakoulas G,Rose WE et al.Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model[J].Antimicrob Agents Chemother,2013,57(1):66-73.
|
[36] |
Monahan LG,Turnbull L,Osvath SR,et al.Rapid conversion of Pseudomonas aeruginosa to a spherical cell morphotype facilitates tolerance to carbapenems and penicillins but increases susceptibility to antimicrobial peptides[J].Antimicrob Agents Chemother,2014,58(4):1 956-1 962.
|
[37] |
Schuch R,Lee HM,Schneider BC,et al.Combination therapy with Lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia[J].J Infect Dis,2014,209(9):1 469-1 478.
|
[38] |
MacCallum DM,Desbois AP,Coote PJ.Enhanced efficacy of synergistic combinations of antimicrobial peptides with caspofungin versus Candida albicans in insect and murine models of systemic infection[J].Eur J Clin Microbiol Infect Dis,2013,32(8):1 055-1 062.
|
[39] |
Bozkurt-Guzel C,Savage PB,Gerceker AA.In vitro acti
|
[1] | YANG Chengwei, GUO Yali, LI Caolong. Synthesis and antibacterial activity of water-soluble limonin benzoylhydrazone derivatives[J]. Journal of China Pharmaceutical University, 2022, 53(3): 273-277. DOI: 10.11665/j.issn.1000-5048.20220303 |
[2] | GAO Liuzhou, XIE Yusuo, HUANG Wenlong, HU Guoqiang. Synthesis, antibacterial and antitumor activities of 1-cycloproyl-6-fluoro-7-(hydrazone)-quinolin-4(1H)-one-carboxylic acids[J]. Journal of China Pharmaceutical University, 2014, 45(6): 662-664. DOI: 10.11665/j.issn.1000-5048.20140607 |
[3] | PANG Daorui, LIU Fan, SHI Ying, LIU Jun, SHEN Weizhi, ZOU Yuxiao, LIAO Sentai, XIAO Gengsheng. Antibacterial activity of 10 phenolic compounds from mulberry[J]. Journal of China Pharmaceutical University, 2014, 45(2): 221-226. DOI: 10.11665/j.issn.1000-5048.20140216 |
[4] | HU Guo-qiang, HOU Li-li, WANG Guo-qiang, DUAN Nan-nan, WEN Xiao-yi, CAO Tie-yao, HUANG Wen-long. Synthesis and antitumor and antibacterial activities of fluoroquinolone C-3 isosteres I.norfloxacin C-3 carbonylhydrazone derivatives[J]. Journal of China Pharmaceutical University, 2012, 43(4): 298-301. |
[5] | CHEN Guo-hua, REN Zhong, YANG Yang, WU Fei-hua. Synthesis and antibacterial activity of novel fourth-generation cephalosporin compounds[J]. Journal of China Pharmaceutical University, 2009, 40(5): 395-399. |
[6] | Synthesis and Antibacterial Activity of C-2 Sulfur-Bridged Tetracyclofluoroquinolone Antibacterial Agent W1[J]. Journal of China Pharmaceutical University, 2001, (4): 7-11. |
[7] | In vitro and In vivo Antibacterial Activities of Fleroxacin Injection[J]. Journal of China Pharmaceutical University, 1997, (5): 53-57. |
[8] | Synthesis and Antibacterial Activity of 6, 8-Difluoro Quinolones[J]. Journal of China Pharmaceutical University, 1993, (5): 264-268. |
[9] | Antimicrobial Activity (in Vitro) of the Constituents of Bulbus Fritillariae[J]. Journal of China Pharmaceutical University, 1992, (3): 188-189. |
[10] | Fang Jingxian, Song Yirong, Bao Yongming. ANTIBACTERIAL ACTIVITIES OF DOXYCYCLINE AND TMP IN COMBINATION[J]. Journal of China Pharmaceutical University, 1984, (3): 54-60. |