• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CHEN Zhipeng, ZHANG Liujie, HE Jiayu, FENG Changhua, ZHAO Xiaoyi, ZHAO Can, CHENG Tiefeng. Cellular uptake of Brucine-loaded chitosan nanoparticles on human hepatic cancer cells in vitro[J]. Journal of China Pharmaceutical University, 2014, 45(6): 674-680. DOI: 10.11665/j.issn.1000-5048.20140610
Citation: CHEN Zhipeng, ZHANG Liujie, HE Jiayu, FENG Changhua, ZHAO Xiaoyi, ZHAO Can, CHENG Tiefeng. Cellular uptake of Brucine-loaded chitosan nanoparticles on human hepatic cancer cells in vitro[J]. Journal of China Pharmaceutical University, 2014, 45(6): 674-680. DOI: 10.11665/j.issn.1000-5048.20140610

Cellular uptake of Brucine-loaded chitosan nanoparticles on human hepatic cancer cells in vitro

More Information
  • A novel polymer material N-glycyrrhetinic acid(GA)-polyethylene glycol(PEG)-chitosan(NGPC)was used as a targeting carrier of Brucine, and then the Brucine-loaded NGPC-NPs(Brucine/NGPC-NPs)were prepared by ionic crosslinking method. The effect of the action of brucine, the brucine concentration, GA and endocytic inhibitors on the cell uptakes of Brucine solution and Brucine/NGPC-NPs were investigated in human HepG2 hepatocellular carcinoma cells. The confocal laser scanning microscopy was used to observe qualitatively the nanoparticles internalization. The results showed that the mean size of Brucine/NGPC-NPs were(197. 6±11. 2)nm; the drug encapsulation efficiency and loading content was(63. 48±4. 67)% and(5. 49±0. 38)%, respectively. The cellular uptake of Brucine solution and Brucine/NGPC-NPs were time-and concentration dependent. In particular, the Brucine/NGPC-NPs could be more efficiently taken up by cells than Brucine solution, with a significant active transport characteristics. Moreover, the presence of free glycyrrhetinic acid could decrease the cell uptake of Brucine/NGPC-NPs, indicating that the uptake of nanoparticles might mainly rely on clathrin-mediated endocytosis, and then internalized by cells. Hence, NGPC-NPs could be a targeting carrier to facilitate the delivery of encapsulated Brucine into the human hepatic cancer cells, achieving the goal of reducing poison and increasing effects.
  • [1]
    Zheng L,Wang X,Luo W,et al.Brucine,an effective natural compound derived from nux-vomica,induces G1 phase arrest and apoptosis in LoVo cells[J].Food Chem Toxicol,2013,58:332-339.
    [2]
    Deng XK,Yin W,Li WD,et al.The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism[J].J Ethnopharmacol,2006,106(2):179-186.
    [3]
    Yin W,Deng XK,Yin FZ,et al.The cytotoxicity induced by brucine from the seed of Strychnos nux-vomica proceeds via apoptosis and is mediated by cyclooxygenase 2 and caspase 3 in SMMC 7221 cells[J].Food Chem Toxicol,2007,45(9):1 700-1 708.
    [4]
    Li XT,Zhang LR,Wang TK,et al.Tissue distribution of brucine in mice[J].Chin J Clin Pharmacol Ther(中国临床药理学与治疗学),2006,11(3):342-344.
    [5]
    Amidi M,Mastrobattista E,Jiskoot W,et al.Chitosan-based delivery systems for protein therapeutics and antigens[J].Adv Drug Deliv Rev,2010,62(1):59-82.
    [6]
    Chen MC,Mi FL,Liao ZX,et al.Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules[J].Adv Drug Deliv Rev,2013,65(6):865-879.
    [7]
    Zhang C,Ding Y,Yu LL,et al.Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives[J].Colloids Surf B Biointerfaces,2007,55(2):192-199.
    [8]
    Koo H,Min KH,Lee SC,et al.Enhanced drug-loading and therapeutic efficacy of hydrotropic oligomer-conjugated glycol chitosan nanoparticles for tumor-targeted paclitaxel delivery[J].J Control Release,2013,172(3):823-831.
    [9]
    Mao SJ,Hou SX,Jin H,et al.Preparation of liposomes surface-modified with glycyrrhetinic acid targeting to hepatocytes[J].China J Chin Mater Med(中国中药杂志),2003,28(4):328-331.
    [10]
    Chen ZP,Xiao L,Liu D,et al.Synthesis of a novel polymer cholesterol-poly(ethylene glycol)2000-glycyrrhetinic acid(chol-PEG-GA)and its application in brucine liposome[J].J Appl Polym Sci,2012,124(6):4 554-4 563.
    [11]
    Yang CH,Huang KS,Lin PW,et al.Using a cross-flow microfluidic chip and external cross-linking reaction for monodisperse TPP-chitosan microparticles[J].Sensors Actuators B-Chem,2007,124(2):510-516.
    [12]
    Csaba N,Koping-Hoggard M,Alonso MJ.Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery[J].Int J Pharm,2009,382(1):205-214.
    [13]
    Bachran D,Schneider S,Bachran C,et al.The endocytic uptake pathways of targeted toxins are influenced by synergistically acting Gypsophila saponins[J].Mol Pharm,2011,8(6):2 262-2 272.
    [14]
    Hao X,Wu J,Shan Y,et al.Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living HeLa cells[J].J Phys Condens Matter,2012,24(16):164 207.
    [15]
    Dudleenamjil E,Lin CY,Dredge D,et al.Bovine parvovirus uses clathrin-mediated endocytosis for cell entry[J].J Gen Virol,2010,91(12):3 032-3 041.
    [16]
    Sakuma S,Suita M,Yamamoto T,et al.Performance of cell-penetrating peptide-linked polymers physically mixed with poorly membrane-permeable molecules on cell membranes[J].Eur J Pharm Biopharm,2012,81(1):64-73.
    [17]
    Fazlollahi F,Angelow S,Yacobi NR,et al.Polystyrene nanoparticle trafficking across MDCK-II[J].Nanomed Nanotechnol Biol Med,2011,7(5):588-594.
    [18]
    Mo R,Sun Q,Xue J,et al.Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery[J].Adv Mater,2012,24(27):3 659-3 665.
  • Related Articles

    [1]LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506
    [2]LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607
    [3]XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309
    [4]MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209
    [5]LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208
    [6]CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107
    [7]LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27.
    [8]SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222.
    [9]Chemical constituents from n-butanol extract of the stems of Lonicera japonica[J]. Journal of China Pharmaceutical University, 2010, 41(4): 333-336.
    [10]Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28.

Catalog

    Article views (1721) PDF downloads (1129) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return