• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
Wu Mengqiu, WU Mengqiu, LU Gaoyuan, SHAO Chang, WANG Dandan, SUN Di, HAO Haiping, WANG Guangji. Mass spectrometry-based protein quantification and its application in pharmacokinetic research[J]. Journal of China Pharmaceutical University, 2015, 46(2): 129-140. DOI: 10.11665/j.issn.1000-5048.20150201
Citation: Wu Mengqiu, WU Mengqiu, LU Gaoyuan, SHAO Chang, WANG Dandan, SUN Di, HAO Haiping, WANG Guangji. Mass spectrometry-based protein quantification and its application in pharmacokinetic research[J]. Journal of China Pharmaceutical University, 2015, 46(2): 129-140. DOI: 10.11665/j.issn.1000-5048.20150201

Mass spectrometry-based protein quantification and its application in pharmacokinetic research

More Information
  • Quantitative proteomics is a mass spectrometry-based toolkit used to analyze and quantify entire proteins contained in whole cells, tissues or organisms. It has become an increasingly important element in exploring the mechanism of various biological processes such as discovering novel biomarkers and unknown drug targets. Emerging advances in biological mass spectrometry instrumentation and data acquisition methodologies have provided a state-of-the-art platform for protein quantification, prompting the research of proteomics evolving from the simple qualitative to the accurate quantitative approach. This review aims to introduce the most recent advancements in mass spectrometry instrumentation and methodologies of data acquisition, focusing on their characteristics and applying fields. It also highlights several significant applications of biological mass spectrometry in pharmaceutical research such as quantifitation of drug transporters and metabolizing enzymes, and pharmacokinetic study of therapeutic peptides and proteins.
  • [1]
    Cho A,Normile D.Nobel Prize in Chemistry.Mastering macromolecules[J].Science,2002,298(5593):527-528.
    [2]
    Aichler M,Walch A.MALDI Imaging mass spectrometry:current frontiers and perspectives in pathology research and practice[J].Lab Invest,2015,DOI: 10.1038/labinvest.2014.156.
    [3]
    Ye H,Mandal R,Catherman A,et al.Top-down proteomics with mass spectrometry imaging:a pilot study towards discovery of biomarkers for neurodevelopmental disorders[J].PLoS One,2014,9(4):e92831.
    [4]
    M.T.Mb,Aydin B,Carlson RP,et al.Identification and imaging of peptides and proteins on enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry[J].Analyst,2012,137(21):5018-5025.
    [5]
    Hanrieder J,Ljungdahl A,Falth M,et al.L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry[J].Mol Cell Proteomics,2011,10(10):M111.
    [6]
    Elsner M,Rauser S,Maier S,et al.MALDI imaging mass spectrometry reveals COX7A2,TAGLN2 and S100-A10 as novel prognostic markers in Barrett′s adenocarcinoma[J].J Proteomics,2012,75(15):4693-4704.
    [7]
    Kang YP,Lee WJ,Hong JY,et al.Novel approach for analysis of bronchoalveolar lavage fluid(BALF)using HPLC-QTOF-MS-based lipidomics:lipid levels in asthmatics and corticosteroid-treated asthmatic patients[J].J Proteome Res,2014,13(9):3919-3929.
    [8]
    Pompach P,Brnakova Z,Sanda M,et al.Site-specific glycoforms of haptoglobin in liver cirrhosis and hepatocellular carcinoma[J].Mol Cell Proteomics,2013,12(5):1281-1293.
    [9]
    Ge Y,Lawhorn BG,Elnaggar M,et al.Top down characterization of larger proteins(45 kDa)by electron capture dissociation mass spectrometry[J].J Am Chem Soc,2002,124(4):672-678.
    [10]
    Bildl W,Haupt A,Muller CS,et al.Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications[J].Mol Cell Proteomics,2012,11(2):M111.007955.
    [11]
    Heo S,Spoerk S,Birner-Gruenberger R,et al.Gel-based mass spectrometric analysis of hippocampal transmembrane proteins using high resolution LTQ Orbitrap Velos Pro[J].Proteomics,2014,14(17/18):2084-2088.
    [12]
    Majovsky P,Naumann C,Lee CW,et al.Targeted proteomics analysis of protein degradation in plant signaling on an LTQ-Orbitrap mass spectrometer[J].J Proteome Res,2014,13(10):4246-4258.
    [13]
    Wang Q, Wen B, Yan G, et al. Qualitative and quantitative expression status of the human chromosome 20 genes in cancer tissues and the representative cell lines[J].J Proteome Res,2013,12(1):151-161.
    [14]
    Gillet LC,Navarro P,Tate S,et al.Targeted data extraction of the MS/MS spectra generated by data-independent acquisition:a new concept for consistent and accurate proteome analysis[J].Mol Cell Proteomics,2012,11(6):O111016717.
    [15]
    Liu Y,Huttenhain R,Surinova S,et al.Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS[J].Proteomics,2013,13(8):1247-1256.
    [16]
    Ong SE,Blagoev B,Kratchmarova I,et al.Stable isotope labeling by amino acids in cell culture,SILAC,as a simple and accurate approach to expression proteomics[J].Mol Cell Proteomics,2002,1(5):376-386.
    [17]
    Sury MD,Chen JX,Selbach M.The SILAC fly allows for accurate protein quantification in vivo[J].Mol Cell Proteomics,2010,9(10):2173-2183.
    [18]
    Westman-Brinkmalm A,Abramsson A,Pannee J,et al.SILAC zebrafish for quantitative analysis of protein turnover and tissue regeneration[J].J Proteomics,2011,75(2):425-434.
    [19]
    Nolte H HS,Housley MP,Islam S,et al.Dynamics of zebrafish fin regeneration using a pulsed silac approach[J].Proteomics,2014,DOI: 10.1002/pmic.201400316.
    [20]
    Kruger M,Moser M,Ussar S,et al.SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function[J].Cell,2008,134(2):353-364.
    [21]
    Zanivan S,Krueger M,Mann M.In vivo quantitative proteomics:the SILAC mouse[J].Methods Mol Biol,2012,757:435-450.
    [22]
    Ishihama Y,Sato T,Tabata T,et al.Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards[J].Nat Biotechnol,2005,23(5):617-621.
    [23]
    Yu KH,Barry CG,Austin D,et al.Stable isotope dilution multidimensional liquid chromatography-tandem mass spectrometry for pancreatic cancer serum biomarker discovery[J].J Proteome Res,2009,8(3):1565-1576.
    [24]
    Geiger T,Cox J,Ostasiewicz P,et al.Super-SILAC mix for quantitative proteomics of human tumor tissue[J].Nat Methods,2010,7(5):383-385.
    [25]
    Mangrum JB,Martin EJ,Brophy DF,et al.Intact stable isotope labeled plasma proteins from the SILAC-labeled HepG2 secretome[J].Proteomics,2014,DOI: 10.1002/pmic.201400369.
    [26]
    Zhang G,Bowling H,Hom N,et al.In-depth quantitative proteomic analysis of de novo protein synthesis induced by brain-derived neurotrophic factor[J].J Proteome Res,2014,13(12):5707-5714.
    [27]
    Van Hoof D,Pinkse MW,Oostwaard DW,et al.An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics[J].Nat Methods,2007,4(9):677-678.
    [28]
    Miyagi M,Rao KC.Proteolytic 18O-labeling strategies for quantitative proteomics[J].Mass Spectrom Rev,2007,26(1):121-136.
    [29]
    Shetty V,Nickens Z,Shah P,et al.Investigation of sialylation aberration in N-linked glycopeptides by lectin and tandem labeling(LTL)quantitative proteomics[J].Anal Chem,2010,82(22):9201-9210.
    [30]
    Yamaguchi H,Miyazaki M.Enzyme-immobilized reactors for rapid and efficient sample preparation in MS-based proteomic studies[J].Proteomics,2013,13(3/4):457-466.
    [31]
    Yen TY,Dutta SM,Litsakos-Cheung C,et al.Overcoming challenges and opening new opportunities in glycoproteomics[J].Biomolecules,2013,3(2):270-286.
    [32]
    Zhang W,Long J,Zhang C,et al.A method combining SPITC and18O labeling for simultaneous protein identification and relative quantification[J].J Mass Spectrom,2014,49(5):400-408.
    [33]
    Yang SJ,Nie AY,Zhang L,et al.A novel quantitative proteomics workflow by isobaric terminal labeling[J].J Proteomics,2012,75(18):5797-5806.
    [34]
    Bezstarosti K,Ghamari A,Grosveld FG,et al.Differential proteomics based on 18O labeling to determine the cyclin dependent kinase 9 interactome[J].J Proteome Res,2010,9(9):4464-4475.
    [35]
    Qin W,Song Z,Fan C,et al.Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast,highly efficient proteome digestion,facile 18O labeling and absolute protein quantification[J].Anal Chem,2012,84(7):3138-3144.
    [36]
    Gygi SP,Rist B,Gerber SA,et al.Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J].Nat Biotechnol,1999,17(10):994-999.
    [37]
    Li J,Steen H,Gygi SP.Protein profiling with cleavable isotope-coded affinity tag(cICAT)reagents:the yeast salinity stress response[J].Mol Cell Proteomics,2003,2(11):1198-1204.
    [38]
    Hansen KC,Schmitt-Ulms G,Chalkley RJ,et al.Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography[J].Mol Cell Proteomics,2003,2(5):299-314.
    [39]
    Hsu JL,Huang SY,Chow NH,et al.Stable-isotope dimethyl labeling for quantitative proteomics[J].Anal Chem,2003,75(24):6843-6852.
    [40]
    Boersema PJ,Aye TT,Van Veen TA,et al.Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates[J].Proteomics,2008,8(22):4624-4632.
    [41]
    Boersema PJ,Raijmakers R,Lemeer S,et al.Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics[J].Nat Protoc,2009,4(4):484-494.
    [42]
    Boersema PJ,Foong LY,Ding VM,et al.In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling[J].Mol Cell Proteomics,2010,9(1):84-99.
    [43]
    Sun Z,Qin H,Wang F,et al.Capture and dimethyl labeling of glycopeptides on hydrazide beads for quantitative glycoproteomics analysis[J].Anal Chem,2012,84(20):8452-8456.
    [44]
    Hubner NC,Nguyen LN,Hornig NC,et al.A quantitative proteomics tool To identify DNA-protein interactions in primary cells or blood[J].J Proteome Res,2015,14(2):1315-1329.
    [45]
    Li S,Zeng D.CILAT—a new reagent for quantitative proteomics[J].Chem Commun(Camb),2007,21:2181-2183.
    [46]
    Zeng D,Li S.Revival of deuterium-labeled reagents for protein quantitation[J].Chem Commun(Camb),2009,23:3369-3371.
    [47]
    Zhang J,Wang Y,Li S.Deuterium isobaric amine-reactive tags for quantitative proteomics[J].Anal Chem,2010,82(18):7588-7595.
    [48]
    Sohn CH,Lee JE,Sweredoski MJ,et al.Click chemistry facilitates formation of reporter ions and simplified synthesis of amine-reactive multiplexed isobaric tags for protein quantification[J].J Am Chem Soc,2012,134(5):2672-2680.
    [49]
    Xiang F,Ye H,Chen R,et al.N,N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics[J].Anal Chem,2010,82(7):2817-2825.
    [50]
    Frost DC,Greer T,Li L.High-resolution enabled 12-plex DiLeu isobaric tags for quantitative proteomics[J].Anal Chem,2015,87(3):1646-1654.
    [51]
    Liu H,Sadygov RG,Yates JR,3rd.A model for random sampling and estimation of relative protein abundance in shotgun proteomics[J].Anal Chem,2004,76(14):4193-4201.
    [52]
    Mueller LN,Brusniak MY,Mani DR,et al.An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data[J].J Proteome Res,2008,7(1):51-61.
    [53]
    Zybailov B,Coleman MK,Florens L,et al.Correlation of relative abnndance ratios derived from peptide ion chromatograms and specxum counting for quantitiative froteomic analysis using stable isotope labeling[J].Anal Chem,2005,77(19):6218-6224.
    [54]
    Colinge J,Chiappe D,Lagache S,et al.Differential proteomics via probabilistic peptide identification scores[J].Anal Chem,2005,77(2):596-606.
    [55]
    Zhang Y,Wen Z,Washburn MP,et al.Refinements to label free proteome quantitation:how to deal with peptides shared by multiple proteins[J].Anal Chem,2010,82(6):2272-2281.
    [56]
    Sardiu ME,Washburn MP.Enriching quantitative proteomics with SI(N)[J].Nat Biotechnol,2010,28(1):40-42.
    [57]
    America AH,Cordewener JH.Comparative LC-MS:a landscape of peaks and valleys[J].Proteomics,2008,8(4):731-749.
    [58]
    Geromanos SJ,Vissers JP,Silva JC,et al.The detection,correlation,and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS[J].Proteomics,2009,9(6):1683-1695.
    [59]
    Blackburn K,Cheng FY,Williamson JD,et al.Data-independent liquid chromatography/mass spectrometry(LC/MSE)detection and quantification of the secreted apium graveolens pathogen defense protein mannitol dehydrogenase[J].Rapid Commun Mass Spectrom,2010,24(7):1009-1016.
    [60]
    Brun V,Dupuis A,Adrait A,et al.Isotope-labeled protein standards:toward absolute quantitative proteomics[J].Mol Cell Proteomics,2007,6(12):2139-2149.
    [61]
    Kito K,Ito T.Mass spectrometry-based approaches toward absolute quantitative proteomics[J].Curr Genomics,2008,9(4):263-274.
    [62]
    Adrait A,Lebert D,Trauchessec M,et al.Development of a protein standard absolute quantification(PSAQ)assay for the quantification of Staphylococcus aureus enterotoxin A in serum[J].J Proteomics,2012,75(10):3041-3049.
    [63]
    Kaiser SE,Riley BE,Shaler TA,et al.Protein standard absolute quantification(PSAQ)method for the measurement of cellular ubiquitin pools[J].Nat Methods,2011,8(8):691-696.
    [64]
    Keogh JP.Membrane transporters in drug development[J].Adv Pharmacol,2012,63:1-42.
    [65]
    Liu X,Hu L,Ge G,et al.Quantitative analysis of cytochrome P450 isoforms in human liver microsomes by the combination of proteomics and chemical probe-based assay[J].Proteomics,2014,14(16):1943-1951.
    [66]
    Seibert C,Davidson BR,Fuller BJ,et al.Multiple approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry[J].J Proteome Res,2009,8(4):1672-1681.
    [67]
    Ohtsuki S,Schaefer O,Kawakami H,et al.Simultaneous absolute protein quantification of transporters,cytochromes P450,and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver:comparison with mRNA levels and activities[J].Drug Metab Dispos,2012,40(1):83-92.
    [68]
    Fusaro VA, Mani DR, Mesirov JP, et al. Prediction of high-responding peptides for targeted protein assays by mass spectrometry[J].Nat Biotechnol,2009,27(2):190-198.
    [69]
    Kawakami H,Ohtsuki S,Kamiie J,et al.Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection[J].J Pharm Sci,2011,100(1):341-352.
    [70]
    Kamiie J,Ohtsuki S,Iwase R,et al.Quantitative atlas of membrane transporter proteins:development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in silico peptide selection criteria[J].Pharm Res,2008,25(6):1469-1483.
    [71]
    Michaels S,Wang MZ.The revised human liver cytochrome P450 "Pie":absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics[J].Drug Metab Dispos,2014,42(8):1241-1251.
    [72]
    Tang Z,Wu M,Li Y,et al.Absolute quantification of NAD(P)H:quinone oxidoreductase 1 in human tumor cell lines and tissues by liquid chromatography-mass spectrometry/mass spectrometry using both isotopic and non-isotopic internal standards[J].Anal Chim Acta,2013,772:59-67.
    [73]
    Russell MR, Achour B, Mckenzie EA, et al. Alternative fusion protein strategies to express recalcitrant QconCAT proteins for quantitative proteomics of human drug metabolizing enzymes and transporters[J].J Proteome Res,2013,12(12):5934-5942.
    [74]
    Achour B,Russell MR,Barber J,et al.Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5′-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics[J].Drug Metab Dispos,2014,42(4):500-510.
    [75]
    Macleod AK,Zang T,Riches Z,et al.A targeted in vivo SILAC approach for quantification of drug metabolism enzymes:regulation by the constitutive androstane receptor[J].J Proteome Res,2014,13(2):866-874.
    [76]
    Macleod AK, Fallon PG, Sharp S, et al. An enhanced in vivo SILAC model for quantification of drug metabolism enzymes[J].Mol Cell Proteomics,2015,DOI: 10.1074/mcp.M114.043661
    [77]
    Richter B,Neises G.‘Human’ insulin versus animal insulin in people with diabetes mellitus[J].Cochrane Database Syst Rev,2005,1:CD003816.
    [78]
    Kemp SF,Fowlkes JL,Thrailkill KM.Efficacy and safety of mecasermin rinfabate[J].Expert Opin Biol Ther,2006,6(5):533-538.
    [79]
    Leader B,Baca QJ,Golan DE.Protein therapeutics:a summary and pharmacological classification[J].Nat Rev Drug Discov,2008,7(1):21-39.
    [80]
    Shin MC, Zhang J, Min KA, et al. Cell-penetrating peptides:achievements and challenges in application for cancer treatment[J].J Biomed Mater Res A,2014,102(2):575-587.
    [81]
    Liu CX,Cai YM,Fan HR.Thinking on pharmacokinetic studies of therapeutic antibody drugs[J].Chin Pharm J(中国药学杂志),2014,49(4):257.
    [82]
    Li YC,Liang Y,Tang ZY,et al.Quantification of endostar in rat plasma by LC-MS/MS and its application in a pharmacokinetic study[J].J Pharm Biomed Anal,2012,70:505-511.
    [83]
    Zhang Q,Spellman DS,Song Y,et al.Generic automated method for liquid chromatography-multiple reaction monitoring mass spectrometry based monoclonal antibody quantitation for preclinical pharmacokinetic studies[J].Anal Chem,2014,86(17):8776-8784.
  • Related Articles

    [1]ZHU Song, JIANG Jing, LIU Yang, ZOU Wenyu, HU Pengwei, LU Yuting, SONG Min, HANG Taijun. Structural identification of the related substances of lorazepam tablets by LC-MS[J]. Journal of China Pharmaceutical University, 2021, 52(5): 555-565. DOI: 10.11665/j.issn.1000-5048.20210507
    [2]ZHOU Yongmei, TANG Cheng, ZHANG Sifang. Isolation and identification of antitumor constituents from Trichosanthes tricuspidata[J]. Journal of China Pharmaceutical University, 2019, 50(1): 46-52. DOI: 10.11665/j.issn.1000-5048.20190106
    [3]LIANG Fangmei, NI Yueling, WANG Lu, HANG Taijun, SONG Min. Structural identification of the related substances of fusidic acid by LC-MS[J]. Journal of China Pharmaceutical University, 2018, 49(3): 322-332. DOI: 10.11665/j.issn.1000-5048.20180311
    [4]ZHOU Yongmei, SHI Xianming, MA Lei, ZHANG Sifang. Isolation and identification of Withaphysalins from Physalis minima[J]. Journal of China Pharmaceutical University, 2015, 46(1): 62-65. DOI: 10.11665/j.issn.1000-5048.20150107
    [5]ZHAO Lili, LIU Wenyuan, WANG Lei, ZHOU Ainan, FENG Feng. Triterpenes from Garcinia hanburyi Hook.f.[J]. Journal of China Pharmaceutical University, 2014, 45(3): 293-296. DOI: 10.11665/j.issn.1000-5048.20140307
    [6]LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208
    [7]RAO Ya-kun, DING Li, YU Yong. Structural identification of two major impurities in sodium levofolinate[J]. Journal of China Pharmaceutical University, 2012, 43(4): 350-354.
    [8]HE Pei, JIANG Yan, JIN Xiao-xi, LI Hui-jun. Chemical constituents from the stems of Viburnum plicatum Thunb.var. tomentosum Miq.[J]. Journal of China Pharmaceutical University, 2012, 43(2): 120-123.
    [9]WANG Ying, YIN Hong-ping, CHEN Tao, WANG Min. Preliminary structural identification and protection on renal cell injury of acidic polysaccharide from Cordyceps sinensis[J]. Journal of China Pharmaceutical University, 2009, 40(6): 559-564.
    [10]WEN Xiao-an, ZHANG Ying-xia, LIU Jun, ZHANG Lu-yong, NI Pei-zhou, SUN Hong-bin. Synthesis and biological activity of heterocycle-fused derivatives of pentacylic triterpenes as glycogen phosphorylase inhibitors[J]. Journal of China Pharmaceutical University, 2009, 40(6): 491-496.

Catalog

    Article views (1643) PDF downloads (2860) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return