• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SHEN Kai, KOU Junping, YU Boyang. Research advances in the mechanisms of active components in Chinese materia medica against oxidative stress-induced neuronal apoptosis[J]. Journal of China Pharmaceutical University, 2015, 46(5): 532-540. DOI: 10.11665/j.issn.1000-5048.20150503
Citation: SHEN Kai, KOU Junping, YU Boyang. Research advances in the mechanisms of active components in Chinese materia medica against oxidative stress-induced neuronal apoptosis[J]. Journal of China Pharmaceutical University, 2015, 46(5): 532-540. DOI: 10.11665/j.issn.1000-5048.20150503

Research advances in the mechanisms of active components in Chinese materia medica against oxidative stress-induced neuronal apoptosis

More Information
  • Oxidative stress-induced neuronal apoptosis plays a vital role in the development of neurodegenerative disorders, while at present its regulation pathways mainly include the NF-κB pathway, p53 pathway, MAPK pathway, PI3K/Akt pathway, Nrf2 pathway, as well as other signaling pathways. Research findings suggest that the active components in Chinese materia medica exert significant biological activities in the treatment of oxidative stress-induced neuronal apoptosis. In the present paper, we review the recent research advances on the relative mechanisms of active components in Chinese materia medica against oxidative stress-induced neuronal apoptosis, so as to provide some references or clues for the clarification of possible mechanisms of active components in Chinese materia medica and the treatment of related neurodegenerative diseases.
  • [1]
    Radi E, Formichi P, Battisti C, et al. Apoptosis and oxidative stress in neurodegenerative diseases[J].J Alzheimers Dis,2014,42(Suppl 3):S125-S152.
    [2]
    Ienco EC,LoGerfo A,Carlesi C,et al.Oxidative stress treatment for clinical trials in neurodegenerative diseases[J].J Alzheimers Dis,2011,24(Suppl 2):111-126.
    [3]
    Shukla V,Mishra SK,Pant HC.Oxidative stress in neurodegeneration[J].Adv Pharmacol Sci,2011,2011:572-634.
    [4]
    Ong WY,Farooqui T,Koh HL,et al.Protective effects of ginseng on neurological disorders[J].Front Aging Neurosci,2015,7:129.
    [5]
    Mincheva-Tasheva S,Soler RM.NF-κB signaling pathways:role in nervous system physiology and pathology[J].Neuroscientist,2013,19(2):175-194.
    [6]
    Engelmann C,Weih F,Haenold R.Role of nuclear factor kappa B in central nervous system regeneration[J].Neural Regen Res,2014,9(7):707-711.
    [7]
    Hu J, Luo CX, Chu WH, et al. 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-κB and JNK pathways[J].PLoS One,2012,7(12):e50764.
    [8]
    Hu W, Wang G, Li P, et al. Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation[J].Chem Biol Interact,2014,224:108-116.
    [9]
    Shi Y, Liang XC, Zhang H, et al. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition[J].Acta Pharmacol Sin,2013,34(9):1140-1148.
    [10]
    Wang T,Gu J,Wu PF,et al.Protection by tetrahydroxystilbene glucoside against cerebral ischemia:involvement of JNK,SIRT1,and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation[J].Free Radic Biol Med,2009,47(3):229-240.
    [11]
    Liu R,Zhang L,Lan X,et al.Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion:involvement of anti-oxidation and anti-inflammation through nuclear transcription factor κappaB signaling pathway[J].Neuroscience,2011,176:408-419.
    [12]
    Song JX,Shaw PC,Sze CW,et al.Chrysotoxine,a novel bibenzyl compound,inhibits 6-hydroxydopamine induced apoptosis in SH-SY5Y cells via mitochondria protection and NF-κB modulation[J].Neurochem Int,2010,57(6):676-689.
    [13]
    Gao K,Liu M,Cao J,et al.Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway[J].Molecules,2014,20(1):293-308.
    [14]
    Dong H,Li R,Yu C,et al.Paeoniflorin inhibition of 6-hydroxydopamine-induced apoptosis in PC12 cells via suppressing reactive oxygen species-mediated PKCδ/NF-κB pathway[J].Neuroscience,2015,285:70-80.
    [15]
    Maillet A,Pervaiz S.Redox regulation of p53,redox effectors regulated by p53:a subtle balance[J].Antioxid Redox Signal,2012,16(11):1285-1294.
    [16]
    Budanov AV.The role of tumor suppressor p53 in the antioxidant defense and metabolism[J].Subcell Biochem,2014,85:337-358.
    [17]
    Zhao DL,Zou LB,Lin S,et al.Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line[J].Neuropharmacology,2007,53(6):724-732.
    [18]
    Jaisin Y,Thampithak A,Meesarapee B,et al.Curcumin I protects the dopaminergic cell line SH-SY5Y from 6-hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis[J].Neurosci Lett,2011,489(3):192-196.
    [19]
    Koo U,Nam KW,Ham A,et al.Neuroprotective effects of 3α-acetoxyeudesma-1,4(15),11(13)-trien-12,6α-olide against dopamine-induced apoptosis in the human neuroblastoma SH-SY5Y cell line[J].Neurochem Res,2011,36(11):1991-2001.
    [20]
    Jiang G,Wu H,Hu Y,et al.Gastrodin inhibits glutamate-induced apoptosis of PC12 cells via inhibition of CaMKII/ASK-1/p38 MAPK/p53 signaling cascade[J].Cell Mol Neurobiol,2014,34(4):591-602.
    [21]
    Guo H,Kong S,Chen W,et al.Apigenin mediated protection of OGD-evoked neuron-like injury in differentiated PC12 cells[J].Neurochem Res,2014,39(11):2197-2210.
    [22]
    Hu LW,Yen JH,Shen YT,et al.Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells[J].PLoS One,2014,9(5):e97880.
    [23]
    Hu JF, Chu SF, Ning N, et al. Protective effect of(-)clausenamide against Abeta-induced neurotoxicity in differentiated PC12 cells[J].Neurosci Lett,2010,483(1):78-82.
    [24]
    Li JW,Ning N,Ma YZ,et al.Claulansine F suppresses apoptosis induced by sodium nitroprusside in PC12 cells[J].Free Radic Res,2013,47(6/7):488-497.
    [25]
    Kim EK,Choi EJ.Pathological roles of MAPK signaling pathways in human diseases[J].Biochim Biophys Acta,2010,1802(4):396-405.
    [26]
    Shehzad A,Lee YS.Molecular mechanisms of curcumin action:signal transduction[J].Biofactors,2013,39(1):27-36.
    [27]
    Vriz S,Reiter S,Galliot B.Cell death:a program to regenerate[J].Curr Top Dev Biol,2014,108:121-151.
    [28]
    Yang EJ,Kim GS,Jun M,et al.Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells[J].Food Funct,5(7):1395-1402.
    [29]
    Zhang K,Ma Z,Wang J,et al.Myricetin attenuated MPP(+)-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells[J].Neuropharmacology,2011,61(1/2):329-335.
    [30]
    Li YB,Lin ZQ,Zhang ZJ,et al.Protective,antioxidative and antiapoptotic effects of 2-methoxy-6-acetyl-7-methyljuglone from Polygonum cuspidatum in PC12 cells[J].Planta Med,2011,77(4):354-361.
    [31]
    Ma B, Meng X, Wang J, et al. Notoginsenoside R1 attenuates amyloid-β-induced damage in neurons by inhibiting reactive oxygen species and modulating MAPK activation[J].Int Immunopharmacol,2014,22(1):151-159.
    [32]
    Farimani MM,Sarvestani NN,Ansari N,et al.Calycopterin promotes survival and outgrowth of neuron-like PC12 cells by attenuation of oxidative- and ER-stress-induced apoptosis along with inflammatory response[J].Chem Res Toxicol,2011,24(12):2280-2292.
    [33]
    Li WW,Gao XM,Wang XM,et al.Icariin inhibits hydrogen peroxide-induced toxicity through inhibition of phosphorylation of JNK/p38 MAPK and p53 activity[J].Mutat Res,2011,708(1/2):1-10.
    [34]
    Kitagishi Y,Nakanishi A,Ogura Y,et al.Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer′s disease[J].Alzheimers Res Ther,2014,6(3):35.
    [35]
    Nakanishi A,Wada Y,Kitagishi Y,et al.Link between PI3K/AKT/PTEN pathway and NOX proteinin diseases[J].Aging Dis,2014,5(3):203-211.
    [36]
    Kitagishi Y,Matsuda S.Diets involved in PPAR and PI3K/AKT/PTEN pathway may contribute to neuroprotection in a traumatic brain injury[J].Alzheimers Res Ther,2013,5(5):42.
    [37]
    Hwang CK,Chun HS.Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons[J].Biosci Biotechnol Biochem,2012,76(3):536-543.
    [38]
    Dong L,Zhou S,Yang X,et al.Magnolol protects against oxidative stress-mediated neural cell damage by modulating mitochondrial dysfunction and PI3K/Akt signaling[J].J Mol Neurosci,2013,50(3):469-481.
    [39]
    Tang Q,Han R,Xiao H,et al.Neuroprotective effects of tanshinone IIA and/or tetramethylpyrazine in cerebral ischemic injury in vivo and in vitro[J].Brain Res,2012,1488:81-91.
    [40]
    Hsu YY,Chen CS,Wu SN,et al.Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells[J].Eur J Pharm Sci,2012,46(5):415-425.
    [41]
    Gao Y,Dong C,Yin J,et al.Neuroprotective effect of fucoidan on H2O2-induced apoptosis in PC12 cells via activation of PI3K/Akt pathway[J].Cell Mol Neurobiol,2012,32(4):523-529.
    [42]
    Baird L,Dinkova-Kostova AT.The cytoprotective role of the Keap1-Nrf2 pathway[J].Arch Toxicol,2011,85(4):241-272.
    [43]
    Niture SK,Khatri R,Jaiswal AK.Regulation of Nrf2-an update[J].Free Radic Biol Med,2014,66:36-44.
    [44]
    Park SY,Kim do Y,Kang JK,et al.Involvement of activation of the Nrf2/ARE pathway in protection against 6-OHDA-induced SH-SY5Y cell death by α-iso-cubebenol[J].Neurotoxicology,2014,44:160-168.
    [45]
    Park SY,Son BG,Park YH,et al.The neuroprotective effects of α-iso-cubebene on dopaminergic cell death:involvement of CREB/Nrf2 signaling[J].Neurochem Res,2014,39(9):1759-1766.
    [46]
    Lou H,Jing X,Ren D,et al.Eriodictyol protects against H2O2-induced neuron-like PC12 cell death through activation of Nrf2/ARE signaling pathway[J].Neurochem Int,2012,61(2):251-257.
    [47]
    Guo H,Kong S,Chen W,et al.Apigenin mediated protection of OGD-evoked neuron-like injury in differentiated PC12 cells[J].Neurochem Res,2014,39(11):2197-2210.
    [48]
    Yao J,Ge C,Duan D,et al.Activation of the phase II enzymes for neuroprotection by ginger active constituent 6-dehydrogingerdione in PC12 cells[J].J Agric Food Chem,2014,62(24):5507-5518.
    [49]
    Hroudová J,Singh N,Fišar Z.Mitochondrial dysfunctions in neurodegenerative diseases:relevance to Alzheimer′s disease[J].Biomed Res Int,2014,2014:175062.
    [50]
    Sekine S,Ichijo H.Mitochondrial proteolysis:its emerging roles in stress responses[J].Biochim Biophys Acta,2015,1850(2):274-280.
    [51]
    Cheng G,Kong RH,Zhang LM,et al.Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies[J].Br J Pharmacol,2012,167(4):699-719.
    [52]
    Liu WB,Zhou J,Qu Y,et al.Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production[J].Neurochem Int,2010,57(3):206-215.
    [53]
    Kwon SH,Kim JA,Hong SI,et al.Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK,p38,and ERK 1/2 MAPKs in SH-SY5Y cells[J].Neurochem Int,2011,58(4):533-541.
    [54]
    Jin ML,Park SY,Kim YH,et al.The neuroprotective effects of cordycepin inhibit glutamate-induced oxidative and ER stress-associated apoptosis in hippocampal HT22 cells[J].Neurotoxicology,2014,41:102-111.
    [55]
    Liu Y,Shen S,Li Z,et al.Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis[J].Neurochem Int,2014,78:43-52.
    [56]
    Fujita Y,Yamashita T.Axon growth inhibition by RhoA/ROCK in the central nervous system[J].Front Neurosci,2014,8:338.
    [57]
    Street CA,Bryan BA.Rho kinase proteins—pleiotropic modulators of cell survival and apoptosis[J].Anticancer Res,2011,31(11):3645-3657.
    [58]
    Li Q,Liu D,Huang X,et al.Fasudil mesylate protects PC12 cells from oxidative stress injury via the Bax-mediated pathway[J].Cell Mol Neurobiol,2011,31(2):243-250.
    [59]
    Wu J,Li J,Hu H,et al.Rho-kinase inhibitor,fasudil,prevents neuronal apoptosis via the Akt activation and PTEN inactivation in the ischemic penumbra of rat brain[J].Cell Mol Neurobiol,2012,32(7):1187-1197.
    [60]
    Jeon BT, Jeong EA, Park SY, et al. The Rho-kinase(ROCK)inhibitor Y-27632 protects against excitotoxicity-induced neuronal death in vivo and in vitro[J].Neurotox Res,2013,23(3):238-248.
    [61]
    He K,Yan L,Pan CS,et al.ROCK-dependent ATP5D modulation contributes to the protection of notoginsenoside NR1 against ischemia-reperfusion-induced myocardial injury[J].Am J Physiol Heart Circ Physiol,2014,307(12):H1764-1776.
    [62]
    Li W, Sun W, Yang CH, et al. Tanshinone II a protects against lipopolysaccharides-induced endothelial cell injury via Rho/Rho kinase pathway[J].Chin J Integr Med,2014,20(3):216-223.
  • Related Articles

    [1]YANG Chengwei, GUO Yali, LI Caolong. Synthesis and antibacterial activity of water-soluble limonin benzoylhydrazone derivatives[J]. Journal of China Pharmaceutical University, 2022, 53(3): 273-277. DOI: 10.11665/j.issn.1000-5048.20220303
    [2]GAO Liuzhou, XIE Yusuo, HUANG Wenlong, HU Guoqiang. Synthesis, antibacterial and antitumor activities of 1-cycloproyl-6-fluoro-7-(hydrazone)-quinolin-4(1H)-one-carboxylic acids[J]. Journal of China Pharmaceutical University, 2014, 45(6): 662-664. DOI: 10.11665/j.issn.1000-5048.20140607
    [3]PANG Daorui, LIU Fan, SHI Ying, LIU Jun, SHEN Weizhi, ZOU Yuxiao, LIAO Sentai, XIAO Gengsheng. Antibacterial activity of 10 phenolic compounds from mulberry[J]. Journal of China Pharmaceutical University, 2014, 45(2): 221-226. DOI: 10.11665/j.issn.1000-5048.20140216
    [4]HU Guo-qiang, HOU Li-li, WANG Guo-qiang, DUAN Nan-nan, WEN Xiao-yi, CAO Tie-yao, HUANG Wen-long. Synthesis and antitumor and antibacterial activities of fluoroquinolone C-3 isosteres I.norfloxacin C-3 carbonylhydrazone derivatives[J]. Journal of China Pharmaceutical University, 2012, 43(4): 298-301.
    [5]CHEN Guo-hua, REN Zhong, YANG Yang, WU Fei-hua. Synthesis and antibacterial activity of novel fourth-generation cephalosporin compounds[J]. Journal of China Pharmaceutical University, 2009, 40(5): 395-399.
    [6]Synthesis and Antibacterial Activity of C-2 Sulfur-Bridged Tetracyclofluoroquinolone Antibacterial Agent W1[J]. Journal of China Pharmaceutical University, 2001, (4): 7-11.
    [7]In vitro and In vivo Antibacterial Activities of Fleroxacin Injection[J]. Journal of China Pharmaceutical University, 1997, (5): 53-57.
    [8]Synthesis and Antibacterial Activity of 6, 8-Difluoro Quinolones[J]. Journal of China Pharmaceutical University, 1993, (5): 264-268.
    [9]Antimicrobial Activity (in Vitro) of the Constituents of Bulbus Fritillariae[J]. Journal of China Pharmaceutical University, 1992, (3): 188-189.
    [10]Fang Jingxian, Song Yirong, Bao Yongming. ANTIBACTERIAL ACTIVITIES OF DOXYCYCLINE AND TMP IN COMBINATION[J]. Journal of China Pharmaceutical University, 1984, (3): 54-60.
  • Cited by

    Periodical cited type(5)

    1. 李文花,王岚. 芙蓉尿感清治疗尿路感染作用机制的网络药理学分析. 医学信息. 2024(14): 1-5 .
    2. 吕鑫科,曾爱国. 木犀草素-聚乙二醇400/PVP k30固体分散体的制备及体内外评价. 西北药学杂志. 2023(06): 100-104 .
    3. 夏志丹,张忠元. 载木犀草素纳米胶束的制备及其大鼠体内药动学研究. 中国现代中药. 2023(10): 2179-2185 .
    4. 施敏,杨莉莉,鲍昌昊,马雯雯,程寒. 木犀草素检测方法研究进展. 化学研究. 2022(01): 85-93 .
    5. 程雨馨,周思琪,张兴彩. 基于GEO差异分析及网络药理学探究银杏叶治疗肺间质纤维化的作用机制. 云南中医中药杂志. 2022(10): 23-30 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return