Citation: | DONG Hong, WU Ruixue, LIU Jiaqi, HUANG Qing, ZHOU Ya, HU Yiqiao. Advances in cancer photodynamic therapy[J]. Journal of China Pharmaceutical University, 2016, 47(4): 377-387. DOI: 10.11665/j.issn.1000-5048.20160401 |
[1] |
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy[J].JNCI Cancer Spectrum,1998,90(12):889-905.
|
[2] |
Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer[J].Nat Rev Cancer,2003,3(5):380-387.
|
[3] |
Castano AP,Demidova,TN,Hamblin MR.Mechanisms in photodynamic therapy:part one-photosensitizers,photochemistry and cellular localization[J].Photodiagn Photodyn Ther,2004,1(4):279-293.
|
[4] |
Lucky SS,Soo KC,Zhang Y.Nanoparticles in photodynamic therapy[J].Chem Rev,2015,115(4):1990-2042.
|
[5] |
Juzeniene A,Nielsen KP,Moan J.Biophysical aspects of photodynamic therapy[J].J Environ Pathol Toxicol Oncol,2006,25(1/2):7-28.
|
[6] |
Henderson BW,Fingar VH.Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor[J].Cancer Res,1987,47(12):3110-3114.
|
[7] |
Mitchell JB,McPherson S,DeGraff W,et al.Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells[J].Cancer Res,1985,45(5):2008-2011.
|
[8] |
Dysart JS,Patterson MS.Characterization of photofrinphotobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro[J].Phys Med Biol,2005,50(11):2597-2616.
|
[9] |
Moan J,Berg K,Kvam E,et al.Intracellular localization of photosensitizers[J].Ciba Found Symp,1989,146:95-107;discussion 107-111.
|
[10] |
Mroz P,Yaroslavsky A,Kharkwal GB,et al.Cell death pathways in photodynamic therapy of cancer[J].Cancers,2011,3(2):2516-2539.
|
[11] |
Baluk P,Hashizume H,McDonald DM.Cellular abnormalities of blood vessels as targets in cancer[J].Curr Opin Genet Dev,2005,15(1):102-111.
|
[12] |
Chen B,Pogue BW,Hoopes PJ,et al.Vascular and cellular targeting for photodynamic therapy[J].Crit Rev Eukaryot Gene Expr,2006,16(4):279-305.
|
[13] |
Huang Z,Xu H,Meyers AD,et al.Photodynamic therapy for treatment of solid tumors - potential and technical challenges[J].Technol Cancer Res Treat,2008,7(4):309-320.
|
[14] |
Dolmans DE,Kadambi A,Hill JS,et al.Vascular accumulation of a novel photosensitizer,MV6401,causes selective thrombosis in tumor vessels after photodynamic therapy[J].Cancer Res,2002,62(7):2151-2156.
|
[15] |
Abels C.Targeting of the vascular system of solid tumours by photodynamic therapy(PDT)[J].Photochem Photobiol Sci,2004,3(8):765-771.
|
[16] |
Allison RR, Moghissi K. Photodynamic therapy(PDT): PDT mechanisms[J].Clin Endosc,2013,46(1):24-29.
|
[17] |
van Duijnhoven FH,Aalbers RI,Rovers JP,et al.The immunological consequences of photodynamic treatment of cancer,a literature review[J].Immunobiolog,2003,207(2):105-113.
|
[18] |
Frangioni JV.In vivo near-infrared fluorescence imaging[J].Curr Opin Chem Biol,2003,7(5):626-634.
|
[19] |
Ronald WW,Marwood NE.In Electro-Optics Handbook[M].2nd ed,McGraw Hill:New York,2000;Professional Access Engineering.
|
[20] |
Jiang C,Cheng H,Yuan A,et al.Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy[J].Actabiomaterialia,2015,14:61-69.
|
[21] |
Vijayaraghavan P,Liu CH,Vankayala R,et al.Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window[J].Adv Mater,2014,26(39):6689-6695.
|
[22] |
Lu T,Shao P,Mathew I,et al.Synthesis and photophysics of benzotexaphyrin:a near-infrared emitter and photosensitizer[J].J Am Chem Soc,2008,130(47):15782-15783.
|
[23] |
Starkey JR, Rebane AK, DrobizhevMA, et al. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse[J].Clin Cancer Res,2008,14:6564-6573.
|
[24] |
Schmitt J,Heitz V,Sour A,et al.Diketopyrrolopyrrole-porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy[J].Angew Chem Int Ed Engl,2015,54(1):169-173.
|
[25] |
Gary-Bobo M,Mir Y,Rouxel C,et al.Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors[J].Angew Chem Int Ed Engl,2011,50(48):11425-11429.
|
[26] |
Wang C,Tao H,Cheng L,et al.Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J].Biomaterials,2011,32(26):6145-6154.
|
[27] |
Idris NM,Gnanasammandhan MK,Zhang J,et al.In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J].Nat Med,2012,18(10):1580-1585.
|
[28] |
Lim CK, Heo J, Shin S, et al. Nanophotosensitizers toward advanced photodynamic therapy of cancer[J].Cancer Lett,2013,334(2):176-187.
|
[29] |
Zou X,Yao M,Ma L,et al.X-ray-induced nanoparticle-based photodynamic therapy of cancer[J].Nanomedicine,2014,9(15):2339-2351.
|
[30] |
Ma L,Zou XJ,Bui B,et al.X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation[J].Appl Phys Lett,2014,105:013702.
|
[31] |
Ma L,Zou X,Chen W.A new X-ray activated nanoparticle photosensitizer for cancer treatment.[J] J Biomed Nanotechnol,2014,10(8):1501-1508.
|
[32] |
Oh SB,Park HR,Jang YJ,et al.Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by γ-ray radiation[J].Br J Pharmacol,2013,168(2):421-431.
|
[33] |
Thariat J,Marcy PY,Lagrange JL,et al.Trends in radiation therapy for the treatment of metastatic and oligometastatic disease in 2010[J].Cancer,2010,97(12):1467-1476.
|
[34] |
Kaáková S,Giuliani A,Lacerda S,et al.X-ray-induced radiophotodynamic therapy(RPDT)using lanthanide micelles:Beyond depth limitations[J].Nano Res,2015,8(7):2373-2379.
|
[35] |
Chen H,Wang GD,Chuang YJ,et al.Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment[J].Nano Lett,2015,15(4):2249-2256.
|
[36] |
Chen HY,Rogalski MM,Anker JN.Advances in functional X-ray imaging techniques and contrast agents[J].Phys Chem Chem Phys,2012,14(39):13469-13486.
|
[37] |
Osseni SA,Lechevallier S,Verelst M,et al.Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T 2-weighted MR,X-ray tomography and photoluminescence[J].Nanoscale, 2014,6(1):555-564.doi: 10.1039/c3nr03982j.
|
[38] |
Kotagiri N, Sudlow GP, Akers WJ, et al. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers[J].Nat Nanotechnol,2015,10(4):370-379.
|
[39] |
Laptev R,Nisnevitch M,Siboni G,et al.Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells[J].Br J Cancer,2006,95(2):189-196.
|
[40] |
Carpenter S,Fehr MJ,Kraus GA,et al.Chemiluminescent activation of the antiviral activity of hypericin:a molecular flashlight[J].Petrich Proc Natl Acad Sci,1994,91(25):12273-12277.
|
[41] |
Theodossiou T,Hothersall JS,Woods EA,et al.Firefly luciferin-activated rose bengal:in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells[J].Cancer Res,2003,63(8):1818-1821.
|
[42] |
Zhang Y,Pang L,Ma C,et al.Small molecule-initiated light-activated semiconducting polymer dots:an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells[J].Anal Chem,2014,86(6):3092-3099.
|
[43] |
Hsu CY, Chen CW, Yu HP, et al. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy[J].Biomaterials,2013,34(4):1204-1212.
|
[44] |
Mei M.Exploration in passive targeting therapy of solid tumor based on the EPR effect(EPR效应在实体瘤被动靶向性治疗中的应用探讨)[D].Beijing:Academy of Military Medical Sciences,2008.
|
[45] |
Mei M,Yuan SJ.EPR effect and treatment strategy of solid tumors[J].Pharm J Chin PLA(解放军药学学报),2008,24(4):345-346.
|
[46] |
Yuan Y,Xu S,Zhang CJ,et al.Dual-targeted activatable photosensitizers with aggregation-induced emission(AIE)characteristics for image-guided photodynamic cancer cell ablation[J].J Mater Chem,2016,4(1):169-176.
|
[47] |
Tian J,Zhou J,Shen Z,et al.A pH-activatable and aniline-substituted photosensitizer for near-infrared cancertheranostics[J].Chem Sci,2015,6(10):5969-5977.
|
[48] |
Fuchs J,Thiele J.The role of oxygen in cutaneous photodynamic therapy[J].Free Radic Biol Med,1998,24(5):835-847.
|
[49] |
Yuan A,Tang X,Qiu X,et al.Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes[J].Chem Commun,2015,51(16):3340-3342.
|
[50] |
Cheng Y,Cheng H,Jiang C,et al.Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J].Nat Commun,2015,6:8785.
|
[51] |
Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers:review of products and trials[J].Artif Organs,2010,34(8):622-634.
|
[52] |
Fuchs J,Thiele J.The role of oxygen in cutaneous photodynamic therapy[J].Free Radic Biol Med,1998,24(5):835-847.
|
[53] |
Chen H,Tian J,He W,et al.H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J].J Am Chem Soc,2015,137(4):1539-1547.
|
[1] | SUN Chenkai, CHEN Xin, CHENG Hao, ZHANG Xiangze, YANG Xiaoyu, ZHOU Jianping, DING Yang. Advances of research on oxygen-enhancing nano-delivery system for photodynamic therapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 387-397. DOI: 10.11665/j.issn.1000-5048.20210401 |
[2] | LI Fang, XIN Junbo, SHI Qin, MAO Chengqiong. Advances in near infrared photoimmunotherapy of tumor[J]. Journal of China Pharmaceutical University, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604 |
[3] | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[4] | YANG Ruocong, DUAN Feipeng, CHAO Jiahong, TIAN Pengpeng, YAN Zhiyong, LI Shaojing. Advances of microRNA activity in innate immunity[J]. Journal of China Pharmaceutical University, 2017, 48(4): 396-406. DOI: 10.11665/j.issn.1000-5048.20170403 |
[5] | XIN Minhang, ZHANG Sanqi. Advances in PI3Kδ selective inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(5): 503-510. DOI: 10.11665/j.issn.1000-5048.20160501 |
[6] | JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418 |
[7] | YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417 |
[8] | CHEN Qingyu, ZHOU Jianping, HUO Meirong. Advances in the nanotechnology-based drug delivery systems of silymarin[J]. Journal of China Pharmaceutical University, 2015, 46(3): 376-384. DOI: 10.11665/j.issn.1000-5048.20150320 |
[9] | SUN Zhan-yi, CAI Hui, HUANG Zhi-hua, SHI Lei, CHEN Yong-xiang, LI Yan-mei. Advances of glycopeptide-associated tumor vaccines[J]. Journal of China Pharmaceutical University, 2012, 43(2): 97-106. |
[10] | XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106. |