Citation: | GAO Yuanyue, LIU Aiyun, SHEN Jiajia, DING Ya. Advances in asialoglycoprotein receptor-mediated liver cancer targeted drug delivery system[J]. Journal of China Pharmaceutical University, 2016, 47(5): 537-542. DOI: 10.11665/j.issn.1000-5048.20160505 |
[1] |
Singh GK,Siahpush M,Altekruse SF.Time trends in liver cancer mortality,incidence,and risk factors by unemployment level and race/ethnicity,United States,1969-2011[J].J Community Health,2013,38(5):926-940.
|
[2] |
Stockert RJ.The asialoglycoprotein receptor:relationships between structure,function,and expression[J].Physiol Rev,1995,75(3):591-610.
|
[3] |
Ma Y,Chen H,Su S,et al.Galactose as broad ligand for multiple tumor imaging and therapy[J].J Cancer,2015,6(7):658-670.
|
[4] |
Lu L, Guo Y, Xu L, et al. Galactosylation of caffeic acid by an engineered β-galactosidase[J]. Drug Discov Ther,2015,9(2):123-128.
|
[5] |
Singh Y,Palombo M,Sinko PJ.Recent trends in targeted anticancer prodrug and conjugate design[J].Curr Med Chem,2008,15(18):1802-1826.
|
[6] |
Fiume L,Mattioli A,Balboni PG,et al.Enhanced inhibition of virus DNA synthesis in hepatocytes by trifluorothymidine coupled to asialofetuin[J].FEBS Lett,1979,103(1):47-51.
|
[7] |
Muro S.Challenges in design and characterization of ligand-targeted drug delivery systems[J].J Control Release,2012,164(2):125-137.
|
[8] |
Fiume L,Mattioli A,Busi C,et al.Selective penetration and pharmacological activity of lactosaminated albumin conjugates of adenine arabinoside 5-monophosphate(ara-AMP)in mouse liver[J].Gut,1984,25(12):1392-1398.
|
[9] |
Wang J,Wu W,Zhang Y,et al.The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors[J].Biomaterials,2014,35(2): 866-878.
|
[10] |
Dodeur M,Durand D,Dumont J,et al.Effects of streptozotocin-induced diabetes mellitus on the binding and uptake of asialoorosomucoïd by isolated hepatocytes from rats[J].Eur J Biochem, 1982,123(2):383-387.
|
[11] |
Hillaireau H,Couvreur P.Nanocarriers′ entry into the cell:relevance to drug delivery[J].Cell Mol Life Sci,2009,66(17):2873-2896.
|
[12] |
Zou Y, Song Y, Yang W, et al. Galactose-installed photo-crosslinked pH-sensitive degradable micelles for active targeting chemotherapy of hepatocellular carcinoma in mice[J].J Control Release,2014,193:154-161.
|
[13] |
Zhong Y,Yang W,Sun H,et al.Ligand-directed reduction-sensitive shell-sheddable biodegradable micelles actively deliver doxorubicin into the nuclei of target cancer cells[J]. Biomacromolecules,2013,14(10):3723-3730.
|
[14] |
Chen W,Meng F,Cheng R,et al.Biodegradable glycopolymer-b-poly(ε-caprolactone)block copolymer micelles: versatile construction,tailored lactose functionality,and hepatoma-targeted drug delivery[J].J Mater Chem B,2015,3(11):2308-2317.
|
[15] |
Schettini DA,Ribeiro RR,Demicheli C,et al.Improved targeting of antimony to the bone marrow of dogs using liposomes of reduced size[J].Int J Pharm,2006,315(1):140-147.
|
[16] |
Zhang H,Xiao Y,Cui S,et al.Novel galactosylated poly(ethylene glycol)-cholesterol for liposomes as a drug carrier for hepatocyte-rargeting[J].J Nanosci Nanotechnol,2015,15(6): 4058-4069.
|
[17] |
Pathak PO, Nagarsenker MS, Barhate CR, et al. Cholesterol anchored arabinogalactan for asialoglycoprotein receptor targeting:synthesis,characterization,and proof of concept of hepatospecific delivery[J].Carbohyd Res,2015,408:33-43.
|
[18] |
Villa R,Cerroni B,Viganò L,et al.Targeted doxorubicin delivery by chitosan-galactosylated modified polymer microbubbles to hepatocarcinoma cells[J].Colloids Surf B Biointerfaces, 2013,110:434-442.
|
[19] |
Lundquist JJ,Toone EJ.The cluster glycoside effect[J].Chem Rev,2002,102(2):555-578.
|
[20] |
She W,Pan D,Luo K,et al.PEGylated dendrimer-doxorubicin cojugates as pH-sensitive drug delivery systems:synthesis and in vitro characterization[J].J Biomed Nanotechnol,2015,11(6): 964-978.
|
[21] |
Duncan B,Kim C,Rotello VM.Gold nanoparticle platforms as drug and biomacromolecule delivery systems[J].J Control Release,2010,148(1):122-127.
|
[22] |
Ding Y,Liang JJ,Geng DD,et al.Development of a liver-targeting gold-PEG-galactose nanoparticle platform and a structure-function study[J].Part Part Syst Char,2014,31(3): 347-356.
|
[23] |
Zhang Y,Chen T,Yuan P,et al.Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells[J].Carbohydr Polym,2015,133:31-38.
|
[24] |
Ding Y,Bao L,Zhang WJ.Preparation and photocatalytic property of magnetic Fe3O4-TiO2 nanoparticles with a core-shell structure[J].J China Pharm Univ(中国药科大学学报),2010,41(4):312-316.
|
[25] |
An J,Zhang X,Guo Q,et al.Glycopolymer modified magnetic mesoporous silica nanoparticles for MR imaging and targeted drug delivery[J].Colloids Surf A Physicochem Eng Asp,2015,482:98-108.
|
[26] |
Xiao B,Wang X,Qiu Z,et al.A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery[J].J Biomed Mater Res A,2013,101(7):1888-1897.
|
[27] |
Thapa B, Kumar P, Zeng H, et al. Asialoglycoprotein receptor-mediated gene delivery to hepatocytes using galactosylated polymers[J].Biomacromolecules,2015,16(9):3008-3020.
|
[28] |
Devarasu T,Saad R,Ouadi A,et al.Potent calcium phosphate nanoparticle surface coating for in vitro and in vivo siRNA delivery:a step toward multifunctional nanovectors[J].J Mater Chem B, 2013,1(36):4692-4700.
|
[29] |
Han L,Tang C,Yin C.Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy[J].Biomaterials,2014,35(15):4589-4600.
|
[30] |
Sajeesh S,Lee TY,Kim JK,et al.Efficient intracellular delivery and multiple-target gene silencing triggered by tripodal RNA based nanoparticles:a promising approach in liver-specific RNAi delivery[J].J Control Release,2014,196:28-36.
|
[1] | LI Zhiyan, LI Xianghui, AI Shichao, YIN Yi, LIU Song, GUAN Wenxian. Application of nanomedicines targeting non-glucose nutrients in tumor starvation therapy[J]. Journal of China Pharmaceutical University, 2022, 53(4): 392-399. DOI: 10.11665/j.issn.1000-5048.20220402 |
[2] | PAN Xiuhua, WU Zhenghong, QI Xiaole. Research status and application progress of CRISPR/Cas9 delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(1): 10-18. DOI: 10.11665/j.issn.1000-5048.20200102 |
[3] | JI Liyang, HAO Jing, WANG Guocheng, XIE Weijia. Research progress on stimulator of interferon genes agonists for cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2020, 51(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20200101 |
[4] | SUN Xiaofeng, LIU Tao, LING Yun, CHEN Zhengwei, PAN Zihao, XU Zite, LUO Ling. Advances in research of hyaluronic acid modified nanomicelles for targeting tumor therapy and drug release behavior[J]. Journal of China Pharmaceutical University, 2019, 50(6): 641-647. DOI: 10.11665/j.issn.1000-5048.20190602 |
[5] | XU Xiangting, WANG Wei. Advances of functionalized carbon nanotubes in diagnosis and treatment of tumor[J]. Journal of China Pharmaceutical University, 2018, 49(2): 165-172. DOI: 10.11665/j.issn.1000-5048.20180205 |
[6] | CAI Han, LIU Yanhong, YIN Tingjie, ZHOU Jianping, HUO Meirong. Advances in the targeted therapy of tumor-associated fibroblasts[J]. Journal of China Pharmaceutical University, 2018, 49(1): 20-25. DOI: 10.11665/j.issn.1000-5048.20180103 |
[7] | ZHANG Ran, TIAN Hong, GAO Xiangdong, YAO Wenbing. Application of next generation genome editing technology in gene therapy and biopharmaceuticals[J]. Journal of China Pharmaceutical University, 2014, 45(4): 504-510. DOI: 10.11665/j.issn.1000-5048.20140421 |
[8] | JIANG Hulin. Biocompatible polymers for gene delivery in cancer gene therapy[J]. Journal of China Pharmaceutical University, 2013, 44(5): 476-481. DOI: 10.11665/j.issn.1000-5048.20130518 |
[9] | YAO Jing, FAN Ying, ZHOU Jian-ping, LI Fei-yan. Advances on the study of new cationic polymers as gene vectors[J]. Journal of China Pharmaceutical University, 2011, 42(2): 176-181. |
[10] | Pharmacokinetics of Magnetic Nanoparticles as Drug Carrier and Their Applications in Cancer Diagnosis and Therapy[J]. Journal of China Pharmaceutical University, 2003, (3): 85-88. |