Citation: | HE Siyu, SUN Haopeng. Advances of covalently modified drugs[J]. Journal of China Pharmaceutical University, 2017, 48(5): 503-514. DOI: 10.11665/j.issn.1000-5048.20170501 |
[1] |
Singh J,Petter RC,Baillie TA,et al.The resurgence of covalent drugs[J].Nat Rev Drug Discov,2011,10(4):307-317.
|
[2] |
Bauer RA.Covalent inhibitors in drug discovery:from accidental discoveries to avoided liabilities and designed therapies[J].Drug Discov Today,2015,20(9):1061-1073.
|
[3] |
Barf T,Kaptein A.Irreversible protein kinase inhibitors:balancing the benefits and risks[J].J Med Chem,2012,55(14):6243-6262.
|
[4] |
Baillie TA. Targeted covalent inhibitors for drug design[J].Angew Chem Int Ed Engl,2016,55(43):13408-13421.
|
[5] |
Hossam M,Lasheen DS,Abouzid KA.Covalent EGFR inhibitors:binding mechanisms,synthetic approaches,and clinical profiles[J].Arch Pharm(Weinheim),2016,349(8):573-593.
|
[6] |
Cheng H,Nair SK,Murray BW.Recent progress on third generation covalent EGFR inhibitors[J].Bioorg Med Chem Lett,2016,26(8):1861-1868.
|
[7] |
Akinleye A,Chen YM,Mukhi N,et al.Ibrutinib and novel BTK inhibitors in clinical development[J].J Hematol Oncol,2013,6(1):1-9.
|
[8] |
Woyach JA,Furman RR,Liu TM,et al.Resistance mechanisms for the Bruton′s tyrosine kinase inhibitor Ibrutinib[J].New Engl J Med,2014,370(24):2286-2294.
|
[9] |
Harrington BK,Gulrajani M,Covey T,et al.ACP-196 is a second generation inhibitor of Bruton tyrosine kinase(BTK)with enhanced target specificity[J].Blood,2015,126(23):2908.
|
[10] |
Wu J,Liu C,Tsui ST,et al.Second-generation inhibitors of Bruton tyrosine kinase[J].J Hematol Oncol,2016,9(1):80.
|
[11] |
Park JK,Byun JY,Park JA,et al.HM71224,a novel Bruton′s tyrosine kinase inhibitor,suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model:a potential drug for rheumatoid arthritis[J].Arthritis Res Ther,2016,18(1):1-9.
|
[12] |
Hagel M,Miduturu C,Sheets M,et al.First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway[J].Cancer Discov,2015,5(4):424-437.
|
[13] |
Ihle NT,Williams R,Chow S,et al.Molecular pharmacology and antitumor activity of PX-866,a novel inhibitor of phosphoinositide-3-kinase signaling[J].Mol Cancer Ther,2004,3(7):763-772.
|
[14] |
Zhao Y,Adjei AA.The clinical development of MEK inhibitors[J].Nat Rev Clin Oncol,2014,11(7):385-400.
|
[15] |
Zhang J,Wu P,Hu Y.Clinical and marketed proteasome inhibitors for cancer treatment[J].Curr Med Chem,2013,20(20):2537-2551.
|
[16] |
Groll M,Berkers CR,Ploegh HL,et al.Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome[J].Structure,2006,14(3):451-456.
|
[17] |
Accardi F,Toscani D,Bolzoni M,et al.Mechanism of action of Bortezomib and the new proteasome inhibitors on myeloma cells and the bone microenvironment:impact on myeloma-induced alterations of bone remodeling[J].Biomed Res Int,2015,2015(2):1-13.
|
[18] |
Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors:an expanding army attacking a unique target[J].Chem Biol,2012,19(1):99-115.
|
[19] |
Hadvary P,Sidler W,Meister W,et al.The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase[J].J Biol Chem,1991,266(4):2021-2027.
|
[20] |
Nabeno M,Akahoshi F,Kishida H,et al.A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site[J].Biochem Biophs Res Commun,2013,434(2):191-196.
|
[21] |
Fura A,Khanna A,Vyas V,et al.Pharmacokinetics of the dipeptidyl peptidase 4 inhibitor saxagliptin in rats,dogs,and monkeys and clinical projections[J].Drug Metab Dispos,2009,37(6):1164-1171.
|
[22] |
Bone HG,Dempster DW,Eisman JA,et al.Odanacatib for the treatment of postmenopausal osteoporosis:development history and design and participant characteristics of LOFT,the long-term odanacatib fracture trial[J].Osteoporos Int,2015,26(2):699-712.
|
[23] |
Wilson AJ,Kerns JK,Callahan JF,et al.Keap calm,and carry on covalently[J].J Med Chem,2013,56(19):7463-7476.
|
[24] |
Linker RA,Lee DH,Ryan S,et al.Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway[J].Brain,2011,134(3):678-692.
|
[25] |
Cleasby A,Yon J,Day PJ,et al.Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO[J].PLoS ONE,2014,9(6):e98896.
|
[26] |
Probst BL,Trevino I,Mccauley L,et al.RTA 408,A novel synthetic triterpenoid with broad anticancer and anti-inflammatory activity[J].PLoS ONE,2015,10(4):e0122942.
|
[27] |
Li W,Zheng S,Higgins M,et al.New monocyclic,bicyclic,and tricyclic ethynylcyanodienones as activators of the Keap1/Nrf2/ARE pathway and inhibitors of inducible nitric oxide synthase[J].J Med Chem,2015,58(11):4738-4748.
|
[28] |
Huerta C,Jiang X,Trevino I,et al.Characterization of novel small-molecule NRF2 activators:structural and biochemical validation of stereospecific KEAP1 binding[J].Biochimica Et Biophysica Acta,2016,1860(11):2537-2552.
|
[29] |
Doyle K,Lönn H,Käck H,et al.Discovery of second generation reversible covalent DPP1 inhibitors leading to an oxazepane amidoacetonitrile based clinical candidate(AZD7986)[J].J Med Chem,2016,59(20):9457-9472.
|
[30] |
Ahn K,Smith SE,Liimatta MB,et al.Mechanistic and pharmacological characterization of PF-04457845:a highly potent and selective fatty acid amide hydrolase inhibitor that reduces inflammatory and noninflammatory pain[J].J Pharmaco Exp Ther,2011,338(1):114-124.
|
[31] |
Joharapurkar AA, Dhanesha NA, Jain MR. Inhibition of the methionine aminopeptidase 2 enzyme for the treatment of obesity[J].Diabetes Metab Syndr Obes,2014,7:73-84.
|
[32] |
Butler KV,Ma A,Yu W,et al.Structure-based design of a covalent inhibitor of the SET domain-containing protein 8(SETD8)lysine methyltransferase[J].J Med Chem,2016,59(21):9881-9889.
|
[33] |
Zhang Y,Zhang D,Tian H,et al.Identification of covalent binding sites targeting cysteines based on computational approaches[J].Mol Pharm,2016,13(9):3106-3118.
|
[34] |
Schreiber SL,Kotz JD,Li M,et al.Advancing biological understanding and therapeutics discovery with small-molecule probes[J].Cell,2015,161(6):1252-1265.
|
[35] |
Lanning BR,Whitby LR,Dix MM,et al.A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors[J].Nat Chem Biol,2014,10(9):760-767.
|
[36] |
Backus KM,Correia BE,Lum KM,et al.Proteome-wide covalent ligand discovery in native biological systems[J].Nature,2016,534(7608):570-574.
|
[37] |
Chen YC,Zhang C.A chemoproteomic method for identifying cellular targets of covalent kinase inhibitors[J].Genes Cancer,2016,7(5/6):148-153.
|
[38] |
Jost C,Nitsche C,Scholz T,et al.Promiscuity and selectivity in covalent enzyme inhibition:a systematic study of electrophilic fragments[J].J Med Chem,2014,57(18):7590-7599.
|
[39] |
Becker D,Kaczmarska Z,Arkona C,et al.Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments[J].Nat Commun,2016,7:12761.
|
[40] |
Kumalo HM,Bhakat S,Soliman ME.Theory and applications of covalent docking in drug discovery:merits and pitfalls[J].Molecules,2015,20(2):1984-2000.
|
[41] |
Toledo Warshaviak D,Golan G,Borrelli KW,et al.Structure-based virtual screening approach for discovery of covalently bound ligands[J].J Chem Inf Model,2014,54(7):1941-1950.
|
[42] |
Schroder J,Klinger A,Oellien F,et al.Docking-based virtual screening of covalently binding ligands:an orthogonal lead discovery approach[J].J Med Chem,2013,56(4):1478-1490.
|
[43] |
Schirmeister T,Kesselring J,Jung S,et al.Quantum chemical-based protocol for the rational design of covalent inhibitors[J].J Am Chem Soc,2016,138(27):8332-8335.
|
[1] | SHANG Feiyang, LIU Chengbo, TAN Hongzhou, HE Bing, HE Liqin. Design, synthesis and antiplatelet aggregation activity of 3-acetyl-7-hydroxycoumarin derivatives[J]. Journal of China Pharmaceutical University, 2024, 55(3): 367-374. DOI: 10.11665/j.issn.1000-5048.2023072901 |
[2] | HU Yuheng, SUN Jie, YANG Jie, WANG Xiaojing. Synthesis and in vitro hypoglycemic activity of 3-(4′-benzoyl amino-phenyl)-coumarin derivatives[J]. Journal of China Pharmaceutical University, 2019, 50(2): 168-174. DOI: 10.11665/j.issn.1000-5048.20190206 |
[3] | YANG Guoxun, XIONG Juan, HU Jinfeng. 2017′s advanced natural products chemistry researches in China(2)[J]. Journal of China Pharmaceutical University, 2018, 49(6): 637-645. DOI: 10.11665/j.issn.1000-5048.20180601 |
[4] | YANG Guoxun, XIONG Juan, HU Jinfeng. 2017′s advanced natural products chemistry researches in China(1)[J]. Journal of China Pharmaceutical University, 2018, 49(5): 511-520. DOI: 10.11665/j.issn.1000-5048.20180501 |
[5] | YANG Rui, ZHU Yi, WANG Yin, MA Wenqi, WANG Xin, HAN Xiqiong, LIU Naifeng. Recent progress in autophagy and vascular calcification[J]. Journal of China Pharmaceutical University, 2018, 49(4): 401-406. DOI: 10.11665/j.issn.1000-5048.20180403 |
[6] | JIN Yue, WU Xuri, CHEN Yijun. Applications of glycosyltransferases in the improvement of druggability of natural products[J]. Journal of China Pharmaceutical University, 2017, 48(5): 529-535. DOI: 10.11665/j.issn.1000-5048.20170504 |
[7] | YU Sulan, YU Xiu, KOU Junping. Advances in the mechanism research of natural products against acute lung injury[J]. Journal of China Pharmaceutical University, 2016, 47(4): 397-403. DOI: 10.11665/j.issn.1000-5048.20160403 |
[8] | XIANG Min, ZHANG Yaqin, WU Pingping, GAO Zhenyu. Effect of block of AGEs-RAGE pathway on the migration of VSMCs[J]. Journal of China Pharmaceutical University, 2016, 47(2): 199-203. DOI: 10.11665/j.issn.1000-5048.20160212 |
[10] | YANG Ya-Bo, WANG Min, LIANG Yan, LIANG Jing-Yu. Transgalactosylation of Isotaxiresinol by[J]. Journal of China Pharmaceutical University, 2002, (6). |